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Abstract

Parabolized stability equations for compressible flows in general curvilinear
coordinate system are derived to deal with a broad range of transition prediction
problems on complex geometry. A highly accurate finite difference PSE code has
been developed using an implicit marching procedure. Compressible and
incompressible flat plate flow stability under two—dimensional and three—
dimensional disturbances has been investigated to test the present code. Results
of the present computation are found to be in good agreement with the multiple
scale analysis and DNS data. Stability calculation results by the present PSE code
for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are
also presented and are again seen to be as accurate as the spectral method.
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Introduction

The subject of compressible boundary—layer stability has attracted a great deal of
interest recently due to its importance in understanding the onset of transition in high—speed
flows and providing some theoretical background for laminar flow control techniques. The
objective of the present work is the development of an accurate and cost efficient code for
analysizing the 2D or 3D boundary layer stability over complex geometries such as surface
roughness elements, elliptic cones, or blunt cones at angle of attack.

Most investigations of compressible linear stability have employed linear stability
theory approach (LST), which ignores the growth of the boundary layer and assumes locally
parallel streamline. Its usefulness is limited by inaccuracies due to the parallel flow
approximation. Another limitation is that the assumption of local parallel flow neglects the
physical connection between the disturbances at different locations and introduces ambiguity
in the calculation of amplitude factors. Different strategies have been suggested to overcome
these deficiencies[1,2]. Another transition prediction tool is the direct numerical simulations
(DNS) using the full Navier—Stokes equations. But it requires too much computer power. So
far, DNS has been tried only for very simple geometries such as flat plate. A general
consensus is that DNS is not appropriate for studying the transition over the realistic
geometries[3].
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Since Herbert's introduction of parabolized stability equations (PSE) [4], it is gaining
popularity for fluid dynamic stability research because of its ability to directly track
disturbances along the marching direction with less computer power. However, most of the
research efforts of PSE so far have been concerned with the stability of the flow past rather
simple geometries, such as flat plate, infinite wing, and finite wing with smooth surface. How
to utilize PSE for the flow stability over surface roughness elements or other complex
geometry is still a challenging task at the present time. For the stability calculations on the
flows associated with rather complex geometries, the PSE need be formulated in a general
curvilinear coordinate system. The present work discusses the formulation of the PSE in
curvilinear coordinate system and the development of the finite difference code.

Problem Formulations

2.1 Full disturbance equations in curvilinear coordinate system

Both the compressible linear stability equations (LST) and the parabolized stability
equations (PSE) originate from the compressible Navier—Stokes equations. The three
dimensional Navier—Stokes equations for the perfect gas are[5],

p‘[%‘f’, tut Vu'l=-Vp + VAV u ) +u (Vu +Vu'"] (D
9p’ “u 2)
—+ V- =0
Y (pu)
p'c;[%+u“VT']=V-(k'VT')+?;;, +u Vu' + @ 3)
p*=p‘R.TX (4)

where u is the velocity vector, p" is the density, p is the pressure, T" is the
* * 5 A * .
temperature, R is the gas constant, c,ls the specific heat at constant pressure, kK is the

thermal conductivity, g"is the first coefficient of viscosity, and A’ is the second coefficient

of viscosity. The viscous dissipation function, ®"is given as
c1>‘=,1'(V.u‘)3+'”7[vu'+vu""] (®)

The superscript * denotes dimensional quantities. For non—dimensionalization of the
governing equations, all the lengths are assumed scaled by a reference length

L =v_.x,/u_ . velocity by u_ . density by p_, pressure by p’y"*, and time by L'/u’
and other variables by their corresponding boundary layer edge values. The instantaneous
non—dimensional values of velocities, #,v, W, pressure p, temperature 1 , density p . may

be represented as the sum of a mean and fluctuation quantity, i.e.,

u=U+u v=—V_+\~/ W=W+

w
p=F+[y T=T+T p=;+p (6)
p=pg+ig A=A+4 k=k+k

Substitution of (6) into the non—dimensional form of governing equations yields the
linearized full perturbation equation in Cartesian coordinate system,
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coefficients are composed of mean flow quantities, which are given in dppendlx A.

The original PSE is based on the assumption that the velocity profiles, wavelengths,
and growth rates change slowly in the streamwise direction. This assumption can hardly be
satisfied for the flows where streamwise variation of mean flow is significant such as the
flow over a hump or other complex geometries. To deal with this situation, it would be more
convenient to write the PSE in curvilinear coordinate system. Let us consider a é‘ -n-¢

system with
E=&(x,y,2)s n=n(x,y,2z) 5§ ={(x,y,2) (8)

where £ p ¢ are streamwise, normal, and spanwise direction coordinates, respectively.

Substitution of (8) into (7) yields the following full disturbance equations in curvilinear
coordinate system,
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where the coefficients with overbar are provided in detail in the Appendix B.

2.2 Full-3D linearized PSE

Direct solution of the disturbance equations (9) is referred to as the direct numerical
simulation (DNS) method. DNS requires a significant amount of computational power even
for a very simple case. Naturally a more efficient approximate method is desirable. The
disturbance equations are elliptic in the streamwise direction. We can parabolize the
disturbance equations and make the marching solution feasible by neglecting the viscous
diffusion terms along the streamwise direction similarly to the parabolized Navier—Stokes
equations (PNS). But direct application of the parabolizing procedure used in the PNS
approach for mean flow computations to the disturbance equations would not capture the
flow physics due to the suppression of the wave propagation along the left—running
characteristics [6]. Herbert and Morkovin[7] also commented that the relatively short
wavelength of instability waves causes streamwise changes too large to be neglected. Chang
and Malik[6] further pointed out that the disturbances are essentially unsteady waves
propagating across the whole boundary layer and the amplitudes of these waves reach their
maxima near the critical layer located between the wall and the boundary layer edge. These
instability waves undergo a “fast—oscillation” (phase change) as they evolve along the flow
direction. Thus the disturbances can be decomposed into a fast—oscillatory wave part and a
slowly varying shape function. By this arrangement, the ellipticity for the wave part is kept
while parabolizing the governing equations for the shape function. The disturbance is
expressed as

o(En, L ) =w (&0, )expi0(&E,¢,1)] (10)

A A o~ A~

where y is the shape function and is defined as y = (p u,v,w,T)" ., @ is a phase

function. It is assumed that the disturbance vector ¢ has a frequency @ and a spanwise
wave number f and a streamwise wave number ¢ , thus
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90 _ _ . ; _ _ (11)
o o a(,f) f > B(E,0) = a{

From Eq.(11), we see that the wave number must satisfy the irrotationality condition [8].

da _3Af _ 96 (12)

¢ 9E  adaC

Substitution of Egs. (10) and (11) into Eq. (9) yields
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D=—iwl +icA+ifC+D+Vza® +Vaf+Vp

— (14)

lanq _lﬂVq{
laVz;; —ZlﬂV;;

m=VunsVe =VyiVi =Ve;Ven=Ven;Ve = VeV =V

It is noted that the matrices 4, B,C,D have contributions from both inviscid and
viscous terms, and thus contain terms of order one and of order 1/R, (Ro is the reference

Reynolds number R, = u_ L’ /v; ); while matrices ﬁg; Ve, I7¢; Vot Van, Ve are solely
due to viscous diffusion and are of order 1/ R;. The shape function is assumed to be changed

slowly along the streamwise and spanwise directions. Its derivatives along both directions
are assumed to be of order 1/R,. After neglecting all the terms which are of order 1/R02,

the full 3D PSE can be obtained as follows.

Iy
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2.3 Quasi-3D linearized PSE equations

For the stability analysis of two dimensional mean flows, it is sufficient to consider
only quasi—3D disturbance whose spanwise wave number is constant. Then the disturbance

vector @ can be expressed as

P&, E )=y (& m)expi0(&E.¢,1)] (16)
where
00 . 20
R - a7n
5%~ 3¢ a(&)> a; =4
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The streamwise wave number ¢ is a function only of f: the spanwise wave number g is

kept constant as disturbances propagate downstream. In this case, Eq.(15) is further
simplified to

5

w. G B =0 A 4 (18)
A——+ B L=V
v+ 5E + % nn FTE
where
~ = da
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;1=Z 2ia7;¢—iﬂ?;; (19)
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2.4 Boundary conditions

The solution of Eq. (15) or Eq. (18) requires proper boundary conditions in the wall—
normal direction. We apply the following homogeneous Dirichlet conditions.

The temperature boundary condition at the wall is reasonable because the
disturbance's frequency is much greater compared to the thermal response time of the wall

(9.
2.5 Normalization conditions

The partition of ¢ into ¥ and @in Eqs. (10) and (16) bears ambiguity since both
W and @ depend on f That is, part of the exponential factor can be included in i without

any change in the form of the partition. To overcome this ambiguity, an additional
normalization equation is required. The hypothesis of PSE is that the shape function
I changes slowly and its derivative is of order l/R0 in both the streamwise and the spanwise

directions. Herbert[10] suggested normalization conditions in Cartesian coordinate system to
make that hypothesis feasible. Here we follow Herbert and give the same normalization
conditions in curvilinear coordinate system as follows.

For full 3D disturbance,

du . AV " dw du .4 v w
Gt pt P ydn =0 [T = +v'— +w' Z)dp =0 (22)
J o¢ ¢ ¢ gj ¢ ¢ 0§

fa 3¢ ' ag W 34 = (23)
Q

+|w

functions independent of f or ¢ . The growth of the disturbance energy is absorbed into the

of the shape

This choice makes the total kinetic energy g _ I(w
Q

phase function €.
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2.6 Measure of physical growth rate
The growth rate of certain physical quantity @ is defined as the logarithmic derivative

- _ 100 _ 1 20 20 (24)
7—real(Q Bx)-real{Q_(Wf’+an '+8§ {_\)jl

where the division berenders the result independent of the magnitude of Q. When we take
Qas @ of Eq. (16), we have

0(&,n.¢.t)=0(&,n)explig(£,¢,0] (25)
and
7 - 120, 120, ., (26)
y = real[(é 3¢ +ia)é, + § 3 n.+ ﬂ{\}

To make the growth rate more specific, we follow Malik[11] and define the growth rate as

- ~tdgq, -~tdg,
_ _fo q,,?dﬂ Io ‘L.Wd?] 27
y=real{(—————+ia), + (————F—In.+ifB{,

q,| dn [Tla.| dn

where g = (u,v,w)’
The definition of Eq. (27) is yet ambiguous since it is affected by the choice of position
in y direction. We thus choose the maximum growth rate as the physical growth rate, that is,

-t dg s ~f aA
B \ q,,a%"dn ;4. 5tmdn (28)
Y = max real (T+ia)§x+(—“—2ﬂ)ﬂx+iﬁ;\»
: [ a.| dan [ |a.] dn

Numerical Methods

So far, most of researchers have solved the PSE by spectral method for accuracy.
However, the spectral method is not easy to apply for the flows over complex geometries.
Therefore, a high—order finite difference method is chosen for the present work for the
solution of PSE in general curvilinear coordinate system.

The determining factor in choosing the streamwise marching scheme is stability. Thus
implicit backward Euler method is usually adopted for marching. In the wall normal direction,
fourth—order finite difference method is employed[5] and one—side difference which does
not involve the wall points is used to approximate the first derivative of pressure.

More specifically the discretization form of Eq. (18) can be written as follows, where
i, j denotes the grid index in the streamwise and normal direction; JM denotes the

maximum grid number in the normal direction.

For j=2
Bl//,.. +4 Vi Vi, 2 m,E -3y, 10y, + 18y, -6y, t Y
! 12A7 %
29
+m2§ _25'//1,' + 48'//;/41 ~ 36'//i/+2 + 16'/’;,43 — 3‘//ij+4

12A7
_ I’; 10'/’:‘;4 _15V/fj - 4'//ij+| + 14l//u+1 - 6'//ij+3 + 'r’/i/+4
I 12A7°2
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For ;=3

For 3<j<JM -2

For j=JM -2

For j=JM -1
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where m, =1,m, = 0 for component 4,v,w,T i m, =0,m, =1 for component .
Egs. (29)— (33) can be rearranged into matrix form as follows.
E(‘.Z Ei,Z Qi.l ] l//LZ Ri.Z
QIJ .E[,S Ei,l V/i,3 RI.S
Qi,4 Qi,4 Ei,‘! Wi.4 Rl.4
By Cs D Eg v | | Rs | BY
41',6 él.6 gi,6 Qi,G Ei.ﬁ Wi,6 - RI‘G
éi,JM -4 Ei.JM~4 g/.JM -4 Qi../hl -4 Ei,./)\l—4 y/i../l\/ -4 Ri../l\l—4
A[,JM =3 El../ll/—} gi,JAI -3 QLJAI -3 El WM=3 V,i..ll\l -3 Ri‘./,’\l =3
MI,J/‘I*Z Ar../AI—Z Bi,.MI—Z gi,l}\l—z Qi,./M—2 '//i../Alfz Ri‘./‘\I—Z
Mi,./ﬂl—l @i..ml—l Ai,.MI—l gi,./[tl‘l gi../ﬂl—l i WL./AI—I Rl.-/.’\l*l

The PSE is nonlinear because the coefficients include the unknown
iterative procedure for & based on Eq. (23) is given as follows:

quantity « . An
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a® =a’”—i|: o”""z‘: aaqén dﬂ/‘[ dﬂ} (35)

where Z]\n = (;,;,Q) , The superscript N and O indicate new value and old values. Eq. (35)

qn

represents a two—dimensional iterative map whose convergence is not proved. However,
Malik[11] has shown that this iterative procedure is a satisfactory approach for computing
a.

The iteration procedure is summarized below.

1. Solve for y  while evaluating matrices D, 4, B,V ,, at i + 1 station

2. Update zx,.’:'

3. Check if aﬁl —a’ < ¢.lIf yes, proceed to next station; otherwise go to step 1

i+l

using new y  based on Eq. (35).

Initial conditions

The PSE is a set of parabolic equations which require initial conditions at the starting
location. To simulate the realistic conditions, the solution of PSE should be initiated by taking
into account the free—stream disturbances. We initiate our PSE solution at some location
ahead of the neutral curve where a parallel local approximation to the PSE is used to obtain
the initial conditions. Under the assumption of parallel streamline (3y /3¢ = 0). Ea. (18)

can be written as

— 2
Dy+E¥ _7,, ¥ (36)

The elements of matrices B,E and 17,,,, are evaluated by assuming parallel mean flows
(V=0,da/dé =0). Eq. (36) in conjunction with homogeneous boundary conditions
constitutes an eigenvalue problem which leads to the dispersion relation

a=a(w,f) (37)
Eq.(19) with parallel flow assumption can be cast into
D=0a’D:+aDi+ Dy
E=a2§2+a’§|+§o (38)
Vin=a*Vi+aVi+Vo
Then Eq. (36) is now written as

a*(Day + B2 ?)_'/r;_ 7,9

oW ~By/
+a(Dw + Bl ——-
m e e i s (39)

W _j a"’):0

+(Dol//+§oan 03772

With similar discretization given in Egs. (29) — (33), Eq. (39) can be put into
a’H,®+aH ®+H,®=0 (40)

where @ = (‘//i.z"//.;s,'//m """" Wi.JM—z"//i.JM—l)T
This can be solved by reformulating it into the following manner [12] for which eigenvalue

solver can be used.
| RO I
0 I -I 0 L] 0
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In order to test this procedure, two—dimensional and quasi—3D disturbances in
supersonic and low subsonic flat plate flows have been considered. The first test is the case
of pm =1.5,=0.0,F =40,R, =800,T,, =311K - where M is the Mach number of free stream, F'is

> " stag
the non—dimensional frequency defined by F = 10¢(w'v" /u ?)=10°(w / R,) » and ng is the

stagnation temperature of the free stream.

As the Mach number increases, the critical layer, where the amplitudes of disturbances
reach their maxima, moves away from the wall towards the edge of the boundary layer. The
grid distributions suitable at certain Mach number must be chosen carefully. To catch
unstable modes correctly, the grids need to be clustered in the critical layer. If there are
equal—space grids in the general computational coordinate 77direction, the clustered physical

grid coordinates have the following form[13],

= aﬂj/ﬂ./M
Lob=1, /M

(j=1,2,3,--JM) (42)

where ; is the grid index of the normal direction from the wall, JM is the maximum grid

number in that direction. Here 4 = | 4+ a/You * Here , _ is the location where free—stream

boundary conditions are satisfied and a is a scaling parameter chosen to optimize the
accuracy of the calculation. Here use g = ymuyi/(ymx -2y,) which puts half the node

points used for discretization between y =0 andy =y, - We take y, to be 1.5 times non—

dimensional displacement thickness at the starting point. During the whole calculations, we
take y__to be 100 and use 100 grid points in the wall normal direction.
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Fig. 1. Spectrum of eigenvalues, spatial
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Fig. 2. Spectrum of eigenvalues, spatial
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The real and the imaginary part of eigenvalue g are o, and y , respectively. The
negative of ydenotes the growth rate. The eigenvalue spectrum obtained is shown in Fig. 1.
The disturbance with —y greater than zero is unstable. From Fig. 1, we see that the spectral
from the present finite difference method is in good agreement with that from the spectral
method given by Bertolotti [14]. Next we increase the spanwise wave number to 0.12 and
solve Eq. (41) with other parameters unchanged. The results are presented in Fig. 2. The
comparison with Bertolotti’s data shows that the present method works well in this case too.

To simulate incompressible flat flow case, a small Mach number is taken. The calculation
is performed for the case of M =1.0E-07,4=0.0, F =100,R, =1500, T,,_ =1100K -

stag
Fig. 3 compares the present spectrum together with the spectrum of the Orr—Sommerfeld
equations (OSE) and that of the local formulations in which nonparallel effect invoked. Fig. 3
indicates that the present method gives the data very close to the Chebyshev method using
80 terms. This demonstrates that the present finite difference method is indeed a good
alternative for spectral method. To be more specific, we pick out the unstable modes from
Figs. 1—3 and compare those with Bertolotti’s data.

(1) Test1
M=15,8=0.0,F=40,R=2800,T =311K

stag

Bertolotti: —y =0.00149166,w/c, = 0.46859732
Present: —y =0.00148996,0w/a, =0.46758789

(2) Test 2
M=l.5,ﬂ=0.12,F=40,R=800,T =311K

stag

Bertolotti: —y =0.00201235,0/, = 0.47794939
Present: -y =0.00209985,w/ar, =0.47257210

(3) Test 3
M =10E-07,=0.0,F=100,R=1500,T =1100K

stag

Bertolotti: —y =0.00366564,«, =0.14022725
Present: 5 =0.00362831,&, =0.14009549

The above data clearly shows that the present method is capable of picking up
unstable modes accurately and thus generates good initial conditions for the PSE calculation.

Mean Flow Computations

To validate the present PSE code in general curvilinear coordinate system, the
insulated flat plate flow is first tested. The mean flow is obtained by the coupled laminar
boundary layer code using the Falkner—Skan transformation[15], which is suitable for the
stability calculation. The code used here has been modified to calculate the flows with
largely varying properties. The dependence of the specific heat C, the viscosity y. and the

conductivity K on temperature is approximated with a fourth—order polynomial given by
least squares interpolation of experimental data between the temperature of 100K and
1600K. The coefficients for the fourth—order degree polynomial expansion in temperature
for ¢, u. and x are given in Table 1, valid for 100K<T<1600K[14]. One can anticipate

that in supersonic flows a change in growth rate of ten percent or more due to the
thermodynamic approximations could easily pollute the measurements of nonparallel effects.



Compressible Parabolized Stability Equation in Curvilinear Coordinate System and Integration 165

Table 1. Values of the coefficients used in the polynomial approximation

Value=cy+c,T +c,T*> +¢c;T* +c¢,T"

E c,(J kg —K)

U(N —s/m?)

k(W /im—-K)

1.058183878E+03

—1.561632014E-07

—1.305884703E—-03

—4.524547049E—-01

7.957989891E-08

1.099134492E-04

1.141345435E-03

—6.930149679E—-11

—6.846979087E—-08

—7.957390422E—-07

4.068157752E—-14

3.327083322E-11

Bl w| N =] O

1.910858151E—10

—9.182486030E—-18

—5.397866355E—15

Thus it is crucial to get an accurate

the stability analysis.

The large effect of properties

the fol

lowing two conditions:

value of properties especially at high Mach number for

can be found by comparing the results obtained under

(a) g, is held constant at its value at 273 K while the viscosity g and the conductivity X

vary polynomially

(b) All the coefficients vary polynomially.

The results are shown in Figs. 4 and 5. Fig. 5 indicates that the effect of property variation
gets more important as the free stream Mach number increases.
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Fig. 4. Mean flow calculation at different Mach
number based on variable specific heat,
viscosity and conductivity
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0.0
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T T
04 0.6

U/Ue

T
0.2

proportional to the dimensional wave number in spanwise direction defined by

b=p-10°/R,

the parameter p which

Fig. 5. Mean flow calculation at different Mach
number based on constant specific heat,
variable viscosity and conductivity

is

(43)

The division by Romakes b independent of the reference length. We comment here that the

dimen

sional

downstream.
The first test is carried out for compressible flat plate flow with two—dimensional
disturbances. The Mach number of free stream is taken to be 1.6. the non—dimensional

spanwise wave number remains constant as the TS wave is convected
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frequency F' is 40 and the stagnation temperature of the free stream is 311 K. The
comparison of growth rates obtained by the present code and by the multiple scales method

reported by El-Hady & Nayfeh[16] is shown in Fig. 6. In abscissa, R is the Reynolds
number (R = Q/u;x'/v; ). Fig. 6 shows that the growth rate of the present PSE code is in

good agreement with that of the multiple scales method. We find that the growth rate
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present PSE code with a comparison with Bertolotti’s nonparallel results

= 311k for various Mach numbers using
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obtained from maximum mass flux is in better agreement than that from maximum velocity
for two dimensional disturbances. Next, we increase the non—dimensional spanwise wave
number bto 0.1 with other parameters unchanged; the quasi—3D disturbance evolvement is
shown in Fig. 7. The comparison clearly indicates that the present PSE code produces very
good results for 3D disturbances.

We have a series of tests at different Mach number ranging from 0.02 to 1.5 at
F =40,T., =311K . First, we concentrate on 2D disturbance (b = 0). The temperature

stag
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of the free stream is held constant at 206 K , and the plate is insulated. All the
thermodynamic coefficients are approximated by fourth—order polynomial. The results
obtained from the present PSE code are compared with the nonparallel results of Bertolotti
[14]. Fig. 8 displays that the data from the present finite difference method is in good
agreement with those from the spectral method at subsonic and supersonic flows. Then we
increase the spanwise wave number to b = 0.15 with other parameters unchanged. The
growth rates obtained from the present method at different Mach number are shown in Fig. 9.
We see that the comparison with the nonparallel results of Bertolotti indicates that present
code is rather accurate. '

The third test is done for incompressible flat plate flow for two—dimensional
disturbances. The flow conditions are: M =10°,F =50,7 =311k - The amplification

stag
factors denoted by N obtained from present PSE code and by DNS[14] are presented in Fig.
10. We see that the agreement with DNS data is remarkably good.

Conclusions

Parabolized stability equations in curvilinear coordinate system are derived. A highly
accurate finite difference PSE code has been developed at a general curvilinear coordinate
system using an implicit marching procedure. Two dimensional and three dimensional
disturbances at compressible/incompressible flat plate flows are tested. The results of the
present computation show good agreement with multiple scale method and DNS method.
Comparison with spectral method for 2D/3D disturbances at different Mach number is also
carried out and the result again demonstrates the accuracy for the present finite difference
scheme.
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Appendix A : Coefficients of the disturbance equation

J

The coefficients of Eq. (7) are as follows. The symbol / is introduced for convenience with
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Appendix B: Coefficients Matrices Relations

The relation between T, 4,B,C,D,V .,V w.V=,Vu,V«,V,-of Ea. (9) and I 4,B,C,D,V, .V, .V, V. V...V,
of Eq. (7) are as follows
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