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Abstract

This paper is focused on designing an implementable control law to perform
spacecraft various missions using momentum exchange devices such as reaction
wheels(RWs) and control moment gyros(CMGs). A compact equation of motion of a
spacecraft installed with various momentum exchange devices is derived in this paper.
A hybrid control law is proposed for precision attitude control of agile spacecraft. The
control law proposed in this paper allocates control torque to the CMGs and the RWs
adequately to satisfy the precision attitude control and large angle maneuver
simultaneously. The saturation problem of reaction wheels and the singularity problem
of control moment gyros are considered. The problems are successfully resolved by
using the proposed hybrid closed loop control law. Finally, the proposed hybrid control
law is demonstrated by numerical simulations.

Key Word : Hybrid Control, Control Moment Gyros, Reaction Wheels, Singularity
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Introduction

The CMG cluster is a representative torque producing device for spacecraft attitude control.
A single gimbal CMG contains a wheel spinning at a constant rate. To exert a torque onto
spacecraft, the wheel is gimbaled or rotated about a fixed axis. The rotation axis and rotation
angle are referred to as the gimbal axis and gimbal angle, respectively. The advantage of CMGs
is that a relatively small gimbal torque input is required to produce a large effective torque.
Therefore, the CMGs produce relatively larger control torque than the RWs. For this reason, It is
sometimes called torque amplifier. This makes the device popular for reorienting space structures.
Consequently, the role of CMGs could be more increased than before. CMGs as well as RWs are
have been applied to perform precise attitude maneuver of spacecraft instead of using thrusters,
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since the torque could be produced continuously which is a different property from the external
torquer.

In particular, the CMG cluster maximizing the torque production capability could be used as
a primary actuator for the maneuverability of agile spacecraft such that the singularity problem of
the CMGs emerges as one of the critical problems. At singular configurations the CMG cluster is
unable to produce required torque command. When the CMG cluster is used to control agile
spacecraft for various missions such as large angle re-orientation, multi-target acquisition and
earth pointing, the several problems induced by the CMG cluster should be deeply considered.

Various approaches have been extensively explored to overcome the singularity problem of
the CMG cluster[3]-[11]. one of the solutions is the null motion method.[7] It represents motion of
the gimbals that produce no net control torque. A variety of analytic approaches to develop a proper
null motion have been investigated. The gradient method to evaluate the null vector received
significant attention and successfully applied to space systems. At first, a gradient vector should be
computed to obtain the null vector. Effective algorithms have been developed to get the gradient
vector. However, the computational burden may be still heavy.[1] In this paper, a fast algorithm to
quickly compute the gradient vector is proposed by introducing a new singularity index.

To avoid singular states, usage of external devices such as thrusters has been developed.
This technique turns the momentum vectors of the CMGs such that the singularity problem of the
CMGs is resolved. This method can surely prevent the CMGs from entering singular
configurations. However, it may not be compatible for the purpose of the precision attitude
control. In this paper, the RWs are applied to overcome the singularity problem as an alternative
device. Moreover, the saturation problem of the RWs is also simultaneously considered. Using the
various momentum exchange devices makes the proposed hybrid control law be a feasibly
approach for the purpose. Equations of motion of a rigid spacecraft consisting of multiple variable
speed control moment gyros(VSCMGs) are derived. The form is transformed to various equations
of motion , for example, a spacecraft with multiple CMGs and RWs. The derived form in this
paper is quite affordable to design a hybrid controller using the momentum exchange devices.

The hybrid control law proposed in this paper allocates control torque to the CMGs and the
RWs adequately to satisfy the precision attitude control and large angle maneuver simultaneously.
The proposed law consists of several terms. each of the terms is related to the required torque
command, null vector for singularity avoidance of the CMGs, and another null vector for the
wheel speed regulation of the RWSs, respectively. Amount of the terms can be adjusted by
controlling weighting parameters. If large torque is required, for example, it is possible by
relatively increasing the weighting parameters related to the RWs. The proposed hybrid control
law could be effective to perform the various missions of agile spacecraft and could be of a
solution to the potential problems of the momentum exchange devices.

Mathematical Model

Let a gimbal frame whose orientation is given by the unit vectors as shown in Fig. 1. Note
that @ is the unit gimbal axis vector, b is the spinning unit axis vector of the wheel disk and c
is the unit torque axis vector. Components of the gimbal frame unit vector are assumed to be
given by the spacecraft body reference frame.

Equations of motion of a rigid spacecraft with multiple VSCMGs is given by [16]

Jortw Jotw Y Clh )= MGy~ Iy~ Lw ) u, (1)

i=1 i
Simplification of System Dynamics

There are some useless terms in Eq.(1) while making a control law using the whole
equation, because certain terms make torques in negligible levels which have nearly not affected
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Fig. 1. Coordinate definition of spacecraft with one VSCMGs

the whole spacecraft system dynamics. One can design more substantial and practical control
laws by eliminating the negligible parts of the system dynamics.
Generally, inertias of gimbal frame and wheel of CMGs are relatively very small compared

with the spacecraft. The angular rate vector and acceleration vector of gimbal frame ("y, 7v)are
relatively small compared with the angular rate of wheel. The angular rate of a spacecraft
performing a given mission is generally small. Momentums produced by small angular rates
exerted to small inertias such as the gimbal frame or the wheel could be negligible. At this point,
let us make a considerably simplified system dynamics

To construct equations of motion of a spacecraft installed with several CMGs and RWs is
considerable meaningful. Assume that there is a spacecraft installed with n+m CMGs. The
governing equation of the spacecraft with various momentum exchange devices is given by
setting the angular rate of gimbals of n CMGs to zero, and fixing the angular rate of wheels of

m CMGs in Eq.(1) such that w=0. Therefore, the system dynamics in Eq.(24) is transformed to
be [16]

Jort 0 Jo+ @ (Cphyet Corhoy) == CoHy = Coop Ly, 2

wrwr

Note that subscripts ¢ and 7 represent a CMG and a RW, respectively. "y‘., h, ER" are the
gimbal angular rate vector and the angular momentum vector of the CMGs, respectively.
w',., h.,ER™ represent the angular acceleration vector and the angular momentum vector of the
RWs, respectively. C, ER**", C,,=E€R>*™ are matrices spanned with the unit vectors of
spinning axis of CMGs and RWs, respectively,

Hybrid Controller Design

The CMGs have been suffering from singularity problem, and the RWs have the wheel
saturation problem. These problems are considered simultaneously with accomplishing the
purpose. A quaternion feedback law is employed for the purpose. Thus, attitude kinematics is
briefly introduced, and then the nonlinear control law follows. Finally, the hybrid control law
using CMGs and RWs is formulated.

Attitude Kinematics

Quaternion sometimes called Euler parameters is defined in terms of the principal rotation
elements as
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= llsin(e/z) (3)
g, = l,5in(6/2)

¢;= 1;5in(6/2)

g, = cos (6/2)

where 6 is the principal angle, [ =111, 13]T is the unit principal axis vector. There is an evident

constraint given by lf+l§+l§ =1 which brings the following constraint
fit+ai+ai+ai= (4)

The kinematic differential equations for the quaternion are given by

% 0 w —wuw ) |q
Bl_ 7w 0 @ w6 5)
& Wy —w; 0 wyf (g
‘1-.1 wTwTw 0] [
By using vector notations,
1oy T
g=— 5wt 5o (6)
- -1
q= T“)Tq

Note that the vector denoted as q= (g, @y q;;)T of the quaternions is called the quaternion vector.

Quaternion Feedback Law

Generally, the gyroscopic terms are not significant for most practical attitude maneuvers of
a spacecraft. However, by directly eliminating the terms, undesirable phase during the large angle
maneuver can be prevented. Nonlinear quaternion feedback law is given by

u=kKe—Kwtw wtw (Ch,+C,hy,) )
where K. and K, are gain matrices. Inserting the quaternion feedback law into Eq.(1) results in
Jot Kw+ Ke=0 (8)

where e = (e, e, e_-,)T is an error quaternion vector. The commanded attitude quaternion vector g.

and the current attitude quaternion vector ¢ are related to the attitude-error quaternion vector.
The relationship is as follows :

€ Qe 93¢ — 92— Q1| | D1
€2|_ | T Be 4 Qe T Q2c| |2 )
€3 Pc T Qe U — D3c| |93
€4 Qe Q¢ 93¢ G4c | |[%

The stability of the closed-loop system is proven by a proper selection of the gain matrices.
It was shown by Wie that if the matrix A 'K, is positive definite, the closed-loop system
globally asymptotically stable. As one of the satisfactory conditions, A, =2k,J and K,=KJ
are enough, where K, and K, are positive constants. For more detail gain selection methods, see
Refs. 14 and 15.

Singularity Avoidance Law

The classical steering laws for CMGs are usually subject to the singularity problem when
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torque vectors are aligned together at the same plane or line. During last several years, various
attempts have been made to solve the singularity avoidance problem. A singularity robust
approach was introduced to avoid singular configurations However, this law did not always
guarantee the singularity avoidance. A strategy so-called null motion was introduced with series
of follow-on research works. It represents a motion of the gimbals that produce no net control
torque. A variety of the analytic approaches to develop a proper null motion have been
investigated. The gradient method, as one of the popular null motion approaches, received
significant attention.

In this section, an optimal steering law for spacecraft with multiple CMGs in Eq.(2) as a
sample system is briefly introduced. The optimization method to avoid singularity of CMGs was
investigated by Lee and Bang. To avoid singular configurations for given CMGs, a cost function
V', to be minimized as a measure of singularity, is selected as

: N
V() + = W (10)
¥ 2

and a constraint is given by
Ay=u (11)

where the matrix A is defined as —C, H,. The cost function V represents a measure of
singularity which should be minimized by the gimbal angular rate. The scalar vER and the
matrix WER"™" are the weighting parameter and matrix for the singularity cost and the energy
term, respectively. The approximated optimal solution for the given cost and the constraint is
given by [13]
v = H'"AT(AH 'AT) (12)
+ [H'AT(AH 'AT) 'AH '-H ']y

where the updated Hessian is defined as A= H+ W . The Hessian H and the gradient vector g
are defined by partial derivatives of a given singularity cost as

— 82 vV
A=Y, 4=2V (13)
Y oy

where At is time interval, If At can be assumed to be zero such that the Hessian could be zero
matrix. Substitution of =0 into Eq.(12) results that the optimal steering law could be identical
with conventional null motion methods. As a cost function to measure singular conditions, the
condition number of 4 or the non-dimensional condition number defined as

0

y=—L (14)

O3

has been widely used. In the above equation o; are the singular values of 4. It is assumed that
they have been arranged such that o, = 0, = 0. To reduce computational burden Schaub and

Junkins provided an useful algorithm to quickly compute 8V/oy. Even though they provided the
quick algorithm, the computational burden of SVD may be still heavy.[1]

An alternative to the singularity index is introduced to quickly calculate the null vector of
A for avoiding singular configurations. Assume that all the inner products of two different column
vectors of a given matrix are all zeros such that the column vectors are orthogonal one another’s
vectors. This means that the matrix has full rank and a non-singular configuration. Therefore, the
inner product related cost can be a singularity measure such that the index is defined as

V=l N ey (15)

2 =i
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A useful property is formulated such that the derivatives of the unit vectors with respect to
gimbal rates are given by
ab; ac;

a_»y,.:C"’ a_%_— b, (16)
and
a2,
P = - (17)

By applying the property in Eq.(13), the i-th element of the gradient vector is compactly found to be

n

9i= 1 {eney(byeyd 18)
ij=li=j
If the optimal steering law is applied to a continuously controlled system such that only the
gradient vector is required, the computational burden to construct optimal gimbal rates for
singularity avoidance could be effectively reduced. Even though the Hessian is required to avoid
singular configurations for a given CMG, it can be readily obtained by applying the properties in
Eqs.(16) and (17). The element of the Hessian is of the form:

3’V _ i 5 )

8’)’}2 = ’_‘j:1<bivc_,'7__<cwcj> (19)
iz

%V

o, = <bi’cj><ci’bj>+<Ci.’cj><bi’b_j>

Only the spinning vector b, and torque unit vector ¢; are used to evaluate the Hessian.

Hybrid Control Using CMGs and RWs

The momentum exchange devices are chosen as CMGs and RWs to formulate a hybrid
controller. The purpose raised in this paper should be achieved simultaneously by resolving the
singular problem of CMGs and the saturation problem of RWs. Therefore, it is important to take
advantages of each device. Proper combination of the merits can be a solution of the problems. As
one of the potential approaches, optimization theory can be a proper method to satisfy the purpose.

To apply optimization theory, it is important to search a cost function to avoid singular
configurations of CMGs and not to excess wheel speed of RWs for a given speed limit. Therefore,
a constrained optimization problem can be formulated by defining a cost function as

min 1,- . 1 - -1 .
i vV+ E(w— w,) "2 w—w,) + E’YTW’)’"‘ —Z—wTYw (20)
with the torque command constraint given in
Ayt Bw=u 1)
where the matrices A and B are defined as

A=-C,H, B=—C,I (22)

wr wr

Subscripts 7 and w can be dropped in 7 and @ without confusion in this case for the sake of
convenience. wER™ is a wheel angular acceleration vector of reaction wheels. ¥ and ZER" ™"
are the weighting matrices, and @, represents the preferred wheel speed vector defined as

(23)
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The singularity cost function and the weighting parameter are equivalently used with the
optimal steering law described in the previous section. The first two terms of the given cost
function are defined to minimize the singular index of CMGs and regulate the wheel speed of
RWs, respectively. The last two terms are related to the energy of CMGs and RWs, respectively.
To obtain a closed-form solution for the hybrid control, optimality conditions are used such that
the state vectors are of the form :

v=—H'(A"\+g) (24)
w=—-X "(B"A+p)
for consistency, the new notations are defined as
X=Y+Z (25)
p=—Zuw,

The vector p can be interpreted as a gradient vector for wheel speed regulations, and AER? is
a Lagrange multiplier vector. By replacing the two state vectors into Eq.(21), the Lagrange vector
can be easily found to be
A=—CYu—CTAH 'g—C*BX 'p (26)
for simplification, the matrix is defined as
Ct=(AH 'AT+Bx'BT)™! 27
Inserting the Lagrange multiplier vector into the optimality conditions results in
y= PCTu+(PCTPT—H “Yg+PCTQp (28)
w= QCu+(QCTQT-Xx p+QC* Py
where
P=H'4T, Q@Q=x'BT (29)

Finally, the proposed closed-loop hybrid control for large angle attitude control by using
CMGs and RWs is constructed. The precision attitude control may be achieved by adjusting the
weighing matrices. If a large torque is required, portion of the CMGs should be increased. This
strategy can be possible by decreasing the weighting matrix W or increasing Y. If precision
control phase is important, portion of the RWs should be increased. Consequently, by properly
adjusting the weighting matrices as a function of a given control torque command the purpose
could be achieved satisfactorily.

CMG? frame definition

CMG3 frame definition

i trame definiion b, T s, 7 CMG! frame definiton

Fig. 2. Pyramid Type CMG configuration
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Simulation Study

In this section, various simulations are performed to demonstrate the proposed hybrid
control law in Eq.(54). The target model is the spacecraft installed with pyramid-type CMG and
RW cluster illustrated in Fig. 2. That is, four CMGs and four RWs are used. Numerical simulation
parameters are listed in Table. 1. The skew angles of 8. and B, are for the CMG and RW
configuration, respectively. The angles have been generally studied and applied to the space
systems. Wheels of the CMGs are assumed to be initially rotating about 2000rpm to generate
momentum vectors. The desired quaternion is arbitrary selected and the profile of the attitude is
illustrated in Fig. 3. The required torque command to satisfy the desired attitude command based
on the quaternion feedback gains of k, and k, is shown in Fig. 4.

Table 1. Numerical simulation parameters

Symbol Value

At 0.01 sec

J diag[2500. 1000. 2000] kg m?
1a diag[1.0. 3.2. 1.0] kg m?
I diag[1.0, 4.0. 1.0] kg m*
=, 2000 rpm

=7 [0.0, 0] rad/s

k. 16.0

K 2.8

3, 36.0°

3, 45.0°

q(0).q4(0)  [-0.6922. -0.0691. 0.6887. 0.2045]"

Table 2. Weighting parameters

Symbol Nominal Only RW  Without null  With null Hybrid
m W, = I, x Tasea 0.1, 0.1,
¥ ),, =0 X .l()*ﬁl_;,,_; 14,<4 X X 1(]“}’,,
7 Zy =Y, x X X Zn
£
§ 3
E
&
12 ] T T T T —— 7 -120 T T T T T Y.
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec)
Fig. 3. Desired spacecraft attitude Fig. 4. Required control torque

Several weighting matrices to design a generic RW controller, CMG controller and a hybrid
control logic are listed in Table. 2. The nominal case means that the portion of the control torque
is fairly divided such that the CMG cluster and four RWs produce 50% control torque,
respectively. At first, the spacecraft is controlled by only four RWs. To produce fully enough
control torque to reorient the spacecraft, the profiles of the angular acceleration and rate of the
RWs are shown in Fig. 5. Large angular acceleration at 250 seconds is required such that it
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a) wheel rate of RWs a) gimbal rate of CMGs

ace (deg/s )
Angle (deg)

T T T T T 1
0 50 100 150 200 250 300

-250 — T T — T 1
Time (sec) 0 50 100 T 150 250 300
b) wheel acceleration of RWs b) gimbal angle of CMGs ime (sec)
Fig. 5. Response of only 4 RWs Fig. 6. Response of CMGs without null motion

introduces large wheel rate at that time. This large acceleration and rate of the wheels can be a
critical problem ,namely, saturation when the RWs are used as primary actuators.

The pyramid-type CMG cluster is only used for the next two simulations to demonstrate
the avoidance level of the singularity between the general pseud-inverse method and the optimal
steering law with the proposed fast gradient method in this paper. The response of CMGs without
the null motion strategy is shown in Fig. 6. It is also required high angular rate of the wheel at
250 second. One can see that a bad condition number of A4 illustrated in Fig. 8 introduces the
undesirable result. In the high condition number, some torque vectors could require unrealistic
high gimbal rates. That is, it is important to keep the condition number in a low level. The results
in Fig. 7 is the response induced by the optimal steering law. The overall aspects of the gimbal
rate and angle of the CMGs are in a reasonable level. The effective gradient vector in Eq.(44) and
Hessian in Eq.(45) proposed in this paper is successfully applied to avoid the singularity. The
dramatically reduced condition number of the null motion strategy illustrated in Fig. 8 guarantees
the performance of the optimal steering law. However, if more large torque is required to control
the agile spacecraft, the condition number of the CMG cluster having limited gimbal rates could
be increased.

The four RWs are added to keep the condition number in a consistent low level. The
proposed hybrid strategy can be applicable by properly allocating the control torque to the RWs.
That is, it is possible by adequately adjusting the weighting parameters. One of weighting choices
for the hybrid is placed in Table. 2. The response of the condition number is also plotted in Fig.8.
The effectiveness can be proven from the result that the condition number is uniformly regulated
in a low level by the help of the RWs.

Next simulation results shown in Figs 9 are for the nominal case. The gimbal rate and the
wheel acceleration are properly divided such that the overall responses take on smooth aspects.
Moreover, from the condition number in Fig. 10 one can inference the performance of the hybrid
control law to be enhanced. The proposed law can show up with various appearance by the
variation of the weighting matrices. To decrease the rate of the RWs the weighting matrix of Y
should be increased. On the lip side, the weighting matrices of W, Y should be decreased to avoid
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Fig. 7. Response of CMGs with null motion
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Fig. 9. Gimbal of CMGs in the nominal case

the singularity or to decrease the condition number. The aspects by the variation of the weighting
matrices are illustrated well in Fig. 11. As Y is increased, the condition numbers are being
increased. On the other hand, the maximum speed of the RWs is being decreased. Thus, one
should properly select the weighting matrices considering the specification of CMGs and RWs for

the precision attitude control of agile spacecraft.
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Conclusions

In this paper, a hybrid control law using various momentum exchange devices for precision
attitude control of agile spacecraft was proposed. A nicely arranged model of spacecraft installed
several CMGs and RWs was formulated. To obtain the gradient vector to generate null vector for
the singularity avoidance, an effective cost function was proposed and the performance was
demonstrated from simulation studies. Singularity avoidance with help of RWs was resolved, and
the saturation problem of RWs was also potentially resolved by adjusting the weighting matrices.
It was turn out that the precision attitude control of agile spacecraft could be performed by the
proposed law using only the momentum exchange devices. Consequently, the hybrid control law
proposed in this paper is applicable to the next generation high performance spacecraft.
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