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Hybridal Method for the Prediction of Wave Instabilities
Inherent in High Energy-Density Combustors (I): Modeling
of Nonlinear Cavity Acoustics and its Evolution

Gil-Yong Lee* and Woong-Sup Yoon**
Department of Mechanical Engineering Yonsei University, Seoul, Korea 120-749

Abstract

This paper targets a direct and quantitative prediction of characteristics of
unstable waves in a combustion chamber, which employs the governing equations
derived in terms of amplification factors of flow variables. A freshly formulated
nonlinear acoustic equation is obtained and the analysis of unsteady waves in a rocket
engine is attempted. In the present formalism, perturbation method decomposes the
variables into time-averaged part that can be obtained easily and accurately and
time-varying part which is assumed to be harmonic. Excluding the use of
conventional spatially sinusoidal eigenfunctions, a direct numerical solution of wave
equation replaces the initial spatial distribution of standing waves and forms the
nonlinear space-averaged terms. Amplification factor is also calculated independently
by the time rate of changes of fluctuating variables, and is no longer an explicit
function for compulsory representation. Employing only the numerical computation,
major assumptions inevitably inherent, and in erroneous manner, in up to date
analytical methods could be avoided. With two definitions of amplification factor, 1-D
stable wave and 3-D unstable wave are examined, and clearly demonstrated the
potentiality of a suggested theoretical-numerical method of combustion instability.
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Introduction

Combustion instability has been a major design criterion and, in certain cases, very severe
problem since 1940s. Even though combustion instability has been studied by numerous
researchers with experimental, analytical, and computational approach, each analysis method has
several fatal problems. Experimental method is time-consuming, whereas the analytical approach
inevitably accompanies too many assumptions, and computational method requires heavy
computational load. Thereby a more accurate and effective analysis method is desired to clarify
the driving, sustaining, or damping mechanism, and to predict the occurrence of unstable acoustic
waves in a rocket system.

Analytical investigations have concentrated mainly on particular acoustic models with
governing equations effectively expressed in terms of combustion response and admittance in the
frequency domain. Crocco introduced combustion time-lag and pressure interaction index. Mitchell
expanded Crocco’s time-lag model with numerical codes. Culick proposed a more generalized
acoustic model to investigate the time-varying amplitudes of pressure waves and accomplished
the linear and nonlinear analysis. Yang et al. expanded this to study the behavior of a limit cycle.
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Although these approaches gave fast results and basic characteristics about combustion
instability, they have many limitations inherently because of oversimplified combustion and
combustor dynamics.

Computational analysis based on numerical simulations focuses on the specific driving
mechanism of combustion instability and fundamental combustion process models and their
contributions to instability. T’'ien and Sirignano regarded the time-lag caused by propellant
thermal inertia as a primary driving mechanism. Dubois and Habiballah have studied the effects
of passive control devices on instability. Liang et al. have also developed a comprehensive model.
Litchford and Jeng, and Kim et al. utilized 2-dimensional annular geometry and studied the effects
of spray combustion and various operating condition combinations on the stability limit. Yoon and
Chung developed the Entropy Controlled Instability to research the effects of turbulence,
nonlinearity, and nonisentropic processes. A majority of computational methods mentioned above
still employs only the simplified physical models and simple or simplified geometry, and required
too heavy computational load.

Present study is concerned with the improved analytical method to overcome the major
assumptions and approximations enforced in the conventional approaches and computational
methods. Analytical approaches proposed by Culick et al. are based on critical assumptions with
uncertainties in the derivation and applications. Whereas, the fatal disadvantages for the
computational method are insufficient calculation capability and excessive simplified models. To
obtain more accurate numeric, further complex models and massive computation are required.

In this paper, a direct and quantitative estimation method of combustion instability is
accomplished by space-averaging of the nonlinear acoustic equations and ODE with mean space
variable obtained numerically. They are calculated by preconditioning scheme with spray
combustion and turbulent model. General governing equations of combustion instability are
obtained in terms of the modal amplification factors from Navier-Stokes system of equations for
gas phase. Condensed phase in the chamber flow is excluded in the present formulation. Using the
numerically obtained steady values, critical assumption of conventional analysis method can be
avoided. Initial value and its temporal changes of each flow variable are calculated based on the
modal amplification factors and orthogonal modes. Histories of targeted acoustic variables are
filtered by FFT to identify the driving frequencies and acoustic modes of the system.

Direct Prediction Approach of Acoustic Instability

Governing Equations of Combustion Instability

The governing equations of combustion instability are derived in terms of the modal
amplification factors for each flow variable, based on the 3-dimensional Navier-Stokes system of
equations for gas-phase as follows.
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Here, H is the source vector associated with the transfer processes between two phases.
PPy Yiompy f; j,q,, and w, are density, velocity vector, pressure, concentration of specie i, rate of
evaporation, body force, specific heat and mass production rate, respectively. 7,; and g¢; are the
viscous stress tensor and heat flux, and thermal and species mass diffusions are represented by
Fourier's and Fick's laws, respectively.

All independent variables in Eq. (1) are decomposed into time-averaged and time-varying
parts, and the latter is assumed to be harmonic. The effect of the definitions of the amplification
factor on the analysis results will be shown in following section. The two definitions of
amplification factor and the equations of the decomposed variable are shown as below
respectively.

The first definition and related equations are presented as below.
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In Eq. 2 €4, A, a,(z), and B,(z) are mode amplification factor, fluctuating and
time-averaged flow properties, pressure-coupled response and velocity—coupled response,
respectively. Specially in this definition, burning rate of condensed matter can be decomposed into
two parts as like other variables and a perturbation of burning rate is represented by
Priem-Heidmann model.

The second definition and related equations are as follows.
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Here ¢ and Q are probability density of each mode vector and the system volume, respectively.
The superscripts in the parenthesis remarks the instant temporal step and the subscripts are the
spectral number of eigenvectors. Unlike the former, the burning rate of condensed matter cannot
be decomposed yet as like other flow variables, because its perturbation cannot be set simply to
be linear sums of products of amplification factors and eigenmodes of other variables. It is the problem
that is not solved completely until now. With the introduction of independent modal amplification
factors, unlike the Culick’s conventional approximate method, the time rates of changes of each
independent variable can be calculated respectively and no assumption such as isentropic process
is used for their relationships. And because only steady solution is required, no further assumption
is necessary for the spatial distribution of flow variables. Therefore this method can be applied to
the study of nonhomogeneous and nonlinear combustion instability that is the most realistic problem
without loss of generality.

In Eq. (2-a,b) and (3-a,b), A means a flow variable. In Eq. (3-a,b), the modal decomposition
is applied. Subscript k is the index of set of eigenmodes and superscript (n) means calculation time
step. Note that the amplification factors are defined in Eq. (3-a,b) for flow variables and their modes
respectively, unlike the former definition. By using the modal amplification factors, it is expected
that the history of flow variables can be described reasonably. With the definition of (2-a) or as
like this, the time-varying parts can be represented by only the change of overall magnitude of
perturbation, and the frequency of wave motion cannot be acquired. So ¢, is introduced as the weighting

function for kth mode of flow variables to decompose the overall changes of perturbation with respect
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to its modes. But note here that ¢, is not necessary to be given by the known or compulsory function
as like Culick’s approximate analysis. In this paper, ¢, can be obtained numerically with the numerical
acoustic model.

Finally, the governing equations of combustion instability are summarized in terms of
amplification factors, introducing the concept of amplification factors defined in Eq. (2-a) or (3-a),
multiplying weighting function for each flow variable, and integrating for system volume. The set
of governing equations are obtained as like Eq. (4) or (5). In other words, the time rates of
changes of each amplification factor are given by the linear or nonlinear combination of all
amplification factors of variables. With the steady solution and initial distributions of each
variable, the temporal changes of perturbations of each variable can be computed numerically by
these sets of governing eguations.
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Application

In this paper, the two definitions of amplification factors are considered. With the first
definition, the source terms can be decomposed and represented by Priem-Heidmann model. On
the other hand, with the second definition, that cannot be modeled completely now and the study
for the relationship between source terms and modal fluctuations is required. It is remained for
future work. So only when the first definition is used, the combustion processes are considered.

In the first application, consider the axisymmetric combustor of 0.15 (m) radius and 1 (m)
length, where n-heptane droplets are chemically reacting with subsonic air flow. Boundary
conditions for air at inlet surface consist of pressure 1 (atm), temperature 1000 (K), and velocity
12 (m/s). Repeating the injection condition examined by Yoon, fuel spray characteristics are
initialized with the 131 droplet groups of different drop diameters, velocity vectors, and mass flux
distributions. The structured grid with 2 blocks is used and each grid consists of 81x10x21 grid
points. The steady solution is obtained by applying preconditioning scheme with k—e 2-equations
turbulent model. In the second case, the governing equations are derived from the Euler equations,
and combustion-related processes and heat addition are ignored. Homogeneous field is assumed.
The distance from one end (closed end) to the other end (open end) is 0.4 (m). The pressure is
1 (atm), temperature is 300 (K), and specific heat ratio is 1.4. The number of grid points is 51 and
they are equally spaced. The first three longitudinal modes of each variable are calculated with
Galerkin method and Rosenbrock’s 4th order ODE solver.

Results and Discussion

The direct prediction of wave motion by newly developing analysis method suggested in
this study shows the satisfactory results in Figs. 1~4. And the effects of definitions of
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Fig. 1. Time Trace of Pressure Perturbation (Without Modal Decomposition)

amplification factor on analysis result are clearly shown from Fig. 1. The ability of detecting of
eigenvalues and eigenmodes in the second case is proved to be quite excellent. Therefore we are
able to assure that the suggested method in that case can be applicable to the analysis of
combustion instability with the combustion response to each acoustic mode. Figure 1(a) and (b)
show the time traces of pressure perturbations in linear and nonlinear analysis. The amplification
factor in nonlinear analysis converges to 1.024 rapidly. But the amplification factor in linear
analysis diverges infinitely. In both cases, the behavior of amplification factor is not wave motion.
So the frequency of resonant acoustic mode can not be known. That is, if the definition of
amplification factor as like the Eq. (2-a) is used, we expect that the wave motion of perturbation
of each variable cannot be described adequately.

Figure 2 shows the calculated eigenmodes of pressure perturbation. The first three
longitudinal mode shapes in Fig. 2 are almost similar to the analytical solution for each
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Fig. 2. Calculated Eigenmode of Pressure Perturbation
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Fig. 4. Identification of Eigenvalues by Calculated Wave Motion

eigenmode. It is noted that the degree of agreement is so high that the symbols on the solid limes
are bearly distinguishable. So it is sure that the modal decomposition with Galerkin method is
accomplished successfully. Figure 3 also shows the history of pressure perturbations at fixed point
near the inlet. The results of case (a) and (b) in Fig. 3 are all sufficiently accurate. The calculated
pressure wave motions are almost similar to those of analytical wave solution. Therefore we
conclude that the each eigenmode calculated with Galerkin method describes the characteristics of
wave in the system with sufficient accuracy. And we assure that second definition of
amplification factor in this paper works well in the processes detecting and identifying
eigensystem and the definition of them is valid physically.

Figure 4 shows the FFT result to identify of eigenvalues with time trace data of pressure
perturbation. The frequencies of first three longitudinal modes are 216, 650, and 1084 (Hz) by
classical acoustics formula and 224, 672, and 1121 (Hz) by direct prediction method suggested in
this paper respectively. The errors are 3.7, 3.3, and 3.4 (%) respectively and those are negligibly
small. Therefore, the capability of newly developing hybrid method is proved in identifying of
frequencies of eigensystem.

Conclusions

In this paper, a direct prediction of stable and unstable wave motion in combustion chamber
is accomplished by using the freshly suggested theoretical-numerical method of combustion
instability. The effects of the definition of amplification factor on the analysis results are showed.
The definition of amplification factor with modal decomposition works better than that of the
other. With the introduction of modal amplification factors and derivation of governing equations
in terms of them, we prove that the wave motion can be analyzed with sufficient accuracy and
efficiency. Moreover we are able to assure that the suggested analysis method can be applicable
to analysis of combustion instability.
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