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Abstract

In this paper, an efficient piezoelectric passive damper is newly devised to
suppress the multi-mode vibration of plates. To construct the passive damper, the
piezoelectric materials are utilized as energy transformer, which can transform the
mechanical energy to electrical energy. To dissipate the electrical energy transformed
from mechanical energy, multiple resonant shunted piezoelectric circuits are applied.
The dynamic governing equations of a coupled electro-mechanical piezoelectric with
multiple piezoelectric patches and multiple resonant shunted circuits is derived and
solved for the one edge clamped plate. The equations of motion of the piezoelectrics
and shunted circuits as well as the plate are discretized by finite element method to
estimate more exactly the effectiveness of the piezoelectric passive damper. The
method to find the optimal location of a piezoelectric is presented to maximize
effectiveness for desired modes. The electro-mechanical coupling term becomes
important parameter to select the optimal location.

Key Word : Piezoelectric, passive damping, multiple modes, finite element method,
location optimization

Introduction

In recent, piezoelectric passive control together with active control has been studied for the
purpose of suppressing the vibration motion of structures. The characteristics of the piezoelectric
material are to transform mechanical vibration energy to electrical energy. In other words, the
piezoelectric can be used as energy transformer. The transformed electrical energy can be dissipated
into the heat energy by shunt circuits. Using these features, vibration energy can be dissipated, and
consequently vibration can be suppressed. Hagood and von Flotow[1] have presented the passive
control using the piezoelectric materials. They introduced the simple shunting circuit consisting of
a resistor and an inductance, which make an electrical resonance. As it is tuned optimally to vibration
mode desired to suppress, the structural vibration decreased effectively. In that paper, an analysis
has been performed by deriving the effective mechanical impedance for the piezoelectric element shunted
by an arbitrary circuit. Hollkampl2] expanded the theory so that a single piezoelectric element can
be used to suppress multiple modes. Davis and Lesieutre[3] developed a method for predicting the
damping performance in beams with resistively shunted piezoceramics based on a variation of the
modal strain energy approach. Tsai and Wang[4] proposed active—passive hybrid piezoelectric network
concept for one-dimensional structures with uni-axial loading and showed that the shunt circuit
can not only provide passive damping, but also enhance the active action authority if tuned correctly.
Hollkamp and Gordon[5] applied piezoelectric passive damper to a two—dimensional planar problem
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by simple mathematical description. The peak electrical energy was utilized to determine the location
of piezoelectric patch. However, before applying this determination procedure, the stress field over
the entire structure should be evaluated because the peak electrical energy is described in terms
of stress field. Saravanos[6] carried out an analysis of composite plates with multiple resistively
shunted piezoelectric layers by using Ritz method which is difficult to apply to the complex structures.

Although the previous work has provided valuable insight, most of the previous work on the
piezoelectric passive damper has been limited to one-dimensional structures, especially to cantilevered
beams and trusses. Moreover, it is difficult to apply the proposed analysis model to complex structures,
because very simple analysis model has been adopted. Therefore, more general methods are required
to efficiently utilize this piezoelectric passive damping technologies in practical structures. In this
work, the dynamic governing equations for a plate with piezoelectric patches connected to multiple
resonant shunted circuits are derived to precisely describe the electro-mechanical coupling behavior
of this electro-mechanical system. In the dynamic governing equations, the dynamic equilibrium
equations for a plate with piezoelectric patches and the dynamic governing equations for multiple
resonant shunted circuits are coupled electro-mechanically with each other. These coupling terms
between displacements of plate and charges of piezoelectric materials clearly explain how to decrease
vibrating responses of host structures with shunted piezoelectric circuits. To provide a general
modeling methodology for complex structures and multiple resonant shunted piezoelectric circuits,
finite element methods are employed to approximate the governing equations for multiple resonant
shunted circuits as well as a plate with piezoelectric patches.

To maximize the effectiveness of the piezoelectric passive damper in suppressing the concerning
modes, a method, how to determine the optimal locations of piezoelectric patches, is proposed, where
the electro-mechanical coupling terms play an important role to optimally locate the piezoelectric
patches in host structures.

Equations of motion

The constitutive equation

This section describes governing equations of motion for piezoelectric structures with electric
circuits. The mechanical and electrical behaviors of a piezoelectric material are described. The linear
piezoelectric constitutive equations of a piezoelectric material can be expressed as follows

E:BSD—hS’ c=-h'D +c’¢ (1)

where E is the electric field vector, D is the electric displacement vector, 0 is the stress vector,
¢ is the strain vector, and BS, h, and c’ represent the piezoelectric constant coefficients(piezoelectric
dielectric matrix, stress constant matrix, and stiffness matrix, respectively). The superscripts S and
D represent the constant strain field and the constant electric displacement field, respectively. The
superscript ¢ denotes transposition of matrix.

For a piezoceramic thin plate polarized in the thickness direction, the material is isotropic in
the other two in plane directions. Under plane stress state, the coupling term of electric and elastic
equations has the form of

b, =[h, A, 0] )
where
_ dyuE°
Tl (1-v) 3)

By the relation (2), the constitutive equations for isotropic materials under plane stress state
is reduced to the following form
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The governing equations of motion

Dynamic governing equations for a plate equipped with the shunted piezoelectric circuit are
derived, based on the Kirchhoff plate theory and Hamilton's principle. In the Kirchhoff plate
theory, the displacement field (i, v, w ) is assumed to be as shown below

u(x,y,z,t) =uy(x,y,t)— z(éw/0x)
v(x,y,z,t) =v,(x,y,t)— z(dw/0y) (6)
w(x,y,z,t) = Wo(X,,V,t)

where (u, v, w ) denotes the displacements of the point (x, y, z) along the x, y, z directions, and
(up , vo , wo) represent displacements of a point on the midplane (x, y, 0) at time t. The linear
strains due to the displacements are written as follows

Ou / Ox Ou, /0x 0*w/ox?

g‘(
E=4¢, = ov/oy = ov, /oy —z3 0*w/oy’ 7
&y Ou /0y +0v/ox Ou, /0y + 0v, /0x 207w/ oxy

The equations of motion of the piezoelectric materials, connected to shunt circuit consisting
of resistor and inductor in series, can be derived through the Hamilton's principle.

fto@ v +wa =0 )
where
_ 1 T . l . T .
T = Eyj:psu udV + EV{p,,u udv (9)
y=21 j'ero-dV L J-srch oL J'D E.dV (10)
2 v, 2 v, 2 v, e

where T denotes the kinetic energy and V is the sum of strain energy and electrical energy. Subscripts
s and p denote the host structure and piezoelectric material, respectively. The virtual work due to
applied force and electric potential is described as

oW =—(LO + RQ -V,)80 + [su’1dS an
S

In equations, u is the mechanical displacement vector, Va is the applied voltage, f is applied
force vector. L and R is inductance and resistance in the shunted piezoelectric circuit, respectively.
Q is the total charge on the electrode of the piezoelectric material due to deformation. Substituting
equation (9), (10) and (11) into equation (8) and integrating by parts, the equations of motion of
the shunted piezoelectric plate can be expressed as the following weak form

j o (5u) idV + j p,(S0) iidV + j(&)’csedr/ % I(é‘e)rcfst - j(&)’h§ D,dV = _[(Su)Tfa’S 12)
V. Ve Ve V. Vi S
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L8500 + R6QQ + [6D,BID,dvV — [5D;h sdV =V,50
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Finite element model

Finite element model for single electrical mode

Four node conforming plate elements based on the Kirchhoff plate theory are used in the modeling.
There are two in—plane degrees of freedom (u, v) and four bending degrees of freedom (w, w,« ,
w,y , W,y ) at each node.

e _ )1 1 2 2 3 3 4 4 \7

U, = {“o Vo Ug Vo Uy Vo U vo}

U* _{ 1 1 1 1 4 4 4 4 }T
pb=Wo W, W, W, = W W, W, W,

The in-plane displacements (u, v) are interpolated by linear functions, and transverse displacement
w is interpolated by hermite cubic polynomials. The displacements (u, v, w) can be expressed by
nodal degrees of freedom as follows

{"}:FU;;,+zcu; w=WU:
1%

Equivalently, it can be written in simplified matrix form

MR AR i
u= vV = =
0 w]lue H
w

e ["l)n
U =
[‘;

From the displacement-strain relation and equation (14), the strains in an element are given by

where

e=RU¢ +:z8U; =BU° (15)

The electrical displacement D3 is the generated charge per area Ap of a piezoelectric material

A, (16)
By using equation (14), (15), and (16), the following element matrices are obtained.
M; = [psN'NaV  Mj = [p,N"Nav
Vy 3 Vp
K= [B'c/BaV  Kj = [B'c/BdV
Vg , Vi

HY = IBThT

B ¥F= jN’fds
AI’ S

8 "

where Ms® and Mp° denote the mass matrices of host structure and piezoelectric material, respectively.
Ms° , and Mp° denote the stiffness matrices of host structure and piezoelectric material, respectively.
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H’ is the coupling matrix, Cr° is inherent capacitance of piezoelectric, L and F is inductance and
resistance, F® is forcing matrix , and V, is the applied voltage.

After assembling the element matrices, we obtain the following discretized governing equations
for electro-mechanically coupled structures.

o ek le Aatln veleh-b)
.ot Lt r s = (17
0 Lj|lQ 0 R||O -H" 1/C, |0 v,

The first row of equation (17) represents the mechanical behavior of the piezoelectric
materials whose actuating force is HQ. The mechanical vibration of the piezoelectric material
causes the electrical charges on both of the electrodes of the piezoelectric material, and this
charge induces the actuating force that suppresses the vibration of structure. And the second row
of equation (17) describes the electric circuit which consists of L-R-C elements in series and
clearly shows that mechanical deformation induces the voltage difference H'U across the
electrodes of piezoelectric materials. It is noted that the electrodes of piezoelectric material as a
capacitance can be resonant with properly selected inductor and the accumulated energy is
dissipated through the resistor.

Finite element model for multiple electrical modes

Even though Eq. (17) is derived for only one piezoelectric patch connected to one
register—inductor element circuit, it can be easily extended to multi piezoelectric patches with
multi resonant circuits. Actually, even single piezoelectric patch can suppress the multiple modes
only by increasing the number of electrical resonances.

In this work, a plate with two piezoelectric patches is considered. Each piezoelectric patch is
connected to resonant circuit designed to produce two types of electrical resonance. It is
illustrated in Fig. 1. In this case, four vibrational modes can be suppressed theoretically, because
each piezoelectric patch is connected to resonant circuit which can be produce two types of
electrical resonance.

The dynamic governing equations of this case can be written in the form of

B R HE e N

where L, R, and Cr’™! are inductance, resistance, and admittance matrices which are related to shunted
circuits.

R?? L.?I C)/
ST

R? L2 GC7
A

Fig. 1. Plate with two piezoelectric patches
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where L{ , R/ , ¢/ , and @/ ,are inductor, resistor, capacitor, and charge which are located in the
i resonant circuit of the jth piezoelectric, respectively. ijS is the jth piezoelectric inherent
capacitance. Hj represents coupling term between host structure and piezoelectric at the location
of jth piezoelectric patch. The optimal location of jth piezoelectric patch to suppress the specific
modes depends on the coupling term H;.

To analysis damped vibration characteristics without applied force, equation (18) is reduced
by using modal reduction technique, and modal damping is introduced. equation(18) is

Mx+Cx+Kx=0 (19)

SIS R R
0 L|, 0 R|, -H'® C' |, Q

where U=0n, , ® M®=1 ,and ®'K®=A
Changing the equation (19) into state space form of the first order differential equations, it is rewritten

“ Bt —melld-ol)

The characteristics of plate with passive shunted piezoelectrics can be determined by carrying out
the eigenvalue analysis of the modal matrix P.

where

Optimal location of a piezoelectric patch

As actuating force HQ is increased, the damping performance induced by piezoelectric patch
is enhanced. Additionally, larger voltage source H'U increases the dissipation of electric energy
through the register in the viewpoint of electric circuit. In other words, if the electro-mechanical
coupling matrix His selected to increase the actuating forces corresponding to the modes which
are to be suppressed, the damping performance is enhanced naturally.

Note that the electro-mechanical coupling matrix Hdepends on the location of piezoelectric
patch as well as the piezoelectric material property hazi. Therefore, in order to suppress the
multiple modes by a piezoelectric patch, it is desirable to place the piezoelectric patch at the
location to maximize the minimum modal actuating force. Modal actuating force means the force
that is corresponding to the concerning mode. Based on this observation, the location of
piezoelectric patch is determined to satisfy the following condition.

Maximize < = min( |q) sH /D (21)
where matrix ®s is column matrix composed of eigenvectors of corresponding modes. One can
determine the optimal location of a piezoelectric patch for the modes to suppress with this criterion.
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Application

Cantilevered plate, of which dimensions are 100 mm width, 150 mm length, and 1 mm
thickness, are made of the aluminum. The two piezoceramics patches with the dimensions of 25
mm width, 50 mm length, and 0.5 mm thickness, are bonded to the plate as shown in Fig. 2. The
piezoceramics are poled perpendicular to the plane of the host structure and the plate is grounded.
The material properties of the plate and the piezoceramics are presented in Table 1. Impact
hammer test was carried out to observe the characteristics of the piezoelectric passive damper.
Excitation force from the impact hammer and the signal from the strain gages are processed at
the FFT analyser. We choose the first and the second modes to suppress. For the first mode that
is bending mode, the optimization location of a piezoelectric is near roots centered and for the
second mode that is twisting mode, it is near root away from the center. The frequencies for the

Table 1. The material properties of plate and piezoceramics

Young's modulus E=713 G
Plate Density 0=2906 kg/m®

Young's modulus (short) E=59 G
Dielectric constant ha=8.606x10® N/C

. . Coupling coefficient k31=0.32

Piezoceramics Transverse d constant d21=260e-12 m/V

Capacitance Ce° =777 nF
Density p=7400 kg/m®

Magnitude (dB)

Fig. 2. Clamped plate with piezoelectric
passive damper
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first mode and the second mode are 47 Hz and 133.5 Hz. One piezoelectric patch with only one
resonant circuit is adopted in the experiment. Optimal resistance and inductance are determined
from the pole placement methodl. In the experiment, for the bending mode, L=1384 H and
R=13.89 kQ. And for the twisting mode, L=18.321 H and R=2.687 k. Fig.3 is frequency response
plot for the first and the second modes. Dotted line represents the case of the open shunt circuit
and dashed line denotes the case with the optimum resistance and inductance. Fig. 4 and Fig. 5
are the time history of sensor outputs in time domain. The first mode and the second mode are
reduced by 9 dB and 5 dB, respectively.

Conclusions

In this paper, we investigate the vibrating characteristics of a cantilevered plate with
piezoelectric passive damper. The dynamic governing equations for a plate with piezoelectric
patches connected to multiple resonant shunted circuits are derived. The finite element methods
are employed to approximate the governing equations for multiple resonant shunted circuits as
well as a plate with piezoelectric patches to estimate more exactly the effectiveness of the
pilezoelectric passive damper. As for as location optimization of a piezoelectric patch concerned, the
location to maximize the minimum modal actuating force can be optimized position. One
piezoelectric patch with only one resonant circuit is adopted in the experiment. The first and
second modes were chosen as the target modes for the experiment and the magnitudes in the
frequency response were reduced by 9 dB and 5 dB, respectively.
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