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Abstract

The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely 

spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the 

control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using 

the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model 

are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be 

viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability 

and performance at all stages of the flight without adjusting controller gains. It is this “plug-and-play” feature that is highly 

preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for 

nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from 

-30% to +30% of the aerodynamic coefficients.
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A(t), B(t), Az(t)	 = state-space system matrices

x(t)	 = state vector

u(t)	 = input vector

y(t)	 = output vector
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Nomenclature 

( )A t , ( )B t , ( )zA t   = state-space system matrices 

( )x t   = state vector 

( )u t   = input vector 

( )y t   = output vector 

( )x t   = nominal state 

( )y t   = nominal output trajectories 

( )u t   = nominal control 

e x x   = state error 

lcu u u   = tracking error control input 

M
 

 = mass of maneuvering re-entry vehicle (MaRV) exclusive of  
 moving mass 
m  = mass of moving-mass element 
V   = velocity of MaRV 

bP   = relative position of mass with respect to body coordinate system 

F  = net aerodynamic force on two-body system 
G  = gravitational force on two-body system 
   = air density 
S   = characteristic area 
   = angle of attack 

   = sideslip angle 

0xc ,
2

xc ,
2

xc   = resistance coefficients 

0yc , yc   = lift coefficients 

	 = nominal state

coefficients. 
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M	 = ��mass of maneuvering re-entry 

vehicle (MaRV) exclusive of 

moving mass

m 	 = mass of moving-mass element

V	 = velocity of MaRV

Pb	 = ��relative position of mass with 

respect to body coordinate system

F 	 = ��net aerodynamic force on two-

body system

G 	 = ��gravitational force on two-body 
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ρ	 = air density

S	 = characteristic area

α	 = angle of attack

β	 = sideslip angle

Cx0, Cx
α2, Cx

β2

	 = resistance coefficients

Cy0, Cy
α	 = lift coefficients

Cz0, Cz
β	 = lateral force coefficients

ω	 = angular velocity

0zc , zc   = lateral force coefficients 

   = angular velocity 
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1 , 2   = time-varying parameters 

Superscripts: 
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1. Introduction

Increasing emphasis has been placed on the need for 

maneuvering re-entry vehicle (MaRV) designs, since future 

missions for atmospheric re-entry vehicles are facing the 

problem of a complex environment, short action time, 

severe weight and volume constraints on actuation and 

instrumentation. The simplicity of a moving-mass roll 

control system (MMRCS), combined with its unique ability 

to provide roll control from within the MaRV's protective 

shell, make it an attractive alternative to more traditional 

aerodynamic or thruster-based roll control systems [1]. 

The purpose of this paper is to present the roll controller 

using trajectory linearization control (TLC) method that 

can handle the uncertainties in disturbances and modeling 

of many modern control problems as exemplified by the 

controller for an MaRV.

The governing equations of motion of a coupled MaRV-

moving mass two-body system are derived using the 

Lagrange method [2,4,5]. The mathematical model has 

a clear physical meaning and is free from force analysis. 

Classical control theories, such as PID, can barely meet 

the needs of MMRCS due to the nonlinearity, coupling and 

time-varying characteristics of the mathematical model. 
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systems. So the simplified roll channel dynamic equation 
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design the controller. Although the controller is designed 

only for nominal aerodynamic coefficients, excellent 

performance is verified by simulation for wind disturbances 
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coefficients.
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of-Freedom (DOF) controller consisting of: (i) a dynamic 

inverse I/O mapping of the plant to compute the nominal 

control function 

consisting of: (i) a dynamic inverse I/O mapping of the plant to compute the nominal control 

function u  for any given nominal output trajectory ( )y t , which is detailed discussed in 

Ref 오류! 참조 원본을 찾을 수 없습니다. about the pseudo-inverse and the 

non-minimum phase case and (ii) a tracking error stabilizing control law lcu  to account for 

modeling simplifications and uncertainties, disturbances and excitation of internal dynamics 

[9,14]. For the unperturbed system of Equation (3), exponential stability is the strongest 

robustness with respect to all kinds of perturbations, and it guarantees finite gain 

bounded-input-bounded-output stability. The structure of TLC control is illustrated in Fig. 1. 

Since nominal state ( )x t  and nominal input ( )u t  can be regarded as additional 

time-varying parameters of Equation (3), we can rewrite Equation (3) as 
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Assumption 1 Let 0x   be an exponentially stable equilibrium point of the nominal system 

(4), where :[0, ) nF D   �  is continuously differentiable, 0|{ }nD e e r  �   and 

the Jaccobian matrix  /F e   is bounded and Lipshitz on D , uniformly in t . There exists 

a nominal control law u  and a time-varying feedback control law lcu  such that 

( , )e F t e  is locally exponentially stable. 

With the assumption that the tracking errors e are small by performance requirement, the 

tracking error dynamics can be linearized along the nominal trajectory as 
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time-varying. There are also numbers of disturbing moments during the re-entry. However, 

the widely used classical PD control theory can’t meet the needs of MMRCS. This paper 

presents the attitude controller for roll channel using TLC. 
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5. Simulation 

A numerical simulation of the full, nonlinear 6-DOF equations of motion is used to 

examine the time response of the TLC for the given roll command. 

The initial conditions for the simulation are: initial speed 0 7000V m s , initial height 

0 50h km , initial flight path angle 0 10   . Of all the parameters used in the controller, 
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and ( ) 50t  . The bandwidth of low pass filter diff  is 10. The lateral position limit of the 

moving mass is 0.5m .

The time histories of the roll angle and tracking error are shown in Fig. 3and Fig. 4. As can 

be seen from the plot, the roll response is very quick with little overshoot. The maximum peak 

overshoot is about 0.7 degree, or 1.75% of the 40-degree commanded roll angle. Also, the 

tracking error is exponentially stabilized as time goes on. 

According to Ref [16], the envelope values of wind speed with a 99% probability are 

shown in Table 1. Simulations are performed at the same given roll command. Fig. 5 and Fig. 

6 show the responses and tracking errors of roll angle with wind disturbances. 
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moving mass is ±0.5m.

The time histories of the roll angle and tracking error 

are shown in Fig. 3 and Fig. 4. As can be seen from the plot, 
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Fig. 3. Response of roll angle. 

 

Fig. 4. Tracking error of roll angle. Fig. 4. Tracking error of roll angle
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performed at the same given roll command. Fig. 5 and Fig. 

6 show the responses and tracking errors of roll angle with 

wind disturbances.

The controller is stable when there are wind disturbances. 

The maximum peak overshoot of all curves is about 0.7 

degree, or 1.75% of the 40-degree commanded roll angle. 

Also, the tracking errors all follow the same trend when 

exponentially stabilized.

Fig. 5. Responses of roll angle with wind disturbances. 

Fig. 6. Tracking errors of roll angle with wind disturbances. 

Fig. 5. Responses of roll angle with wind disturbancesFig. 5. Responses of roll angle with wind disturbances. 

Fig. 6. Tracking errors of roll angle with wind disturbances. Fig. 6. Tracking errors of roll angle with wind disturbances

Table 1. Envelope values of wind speed with a 99% probability
Table 1. Envelope values of wind speed with a 99% probability 

99% 
H/km 1 3 5 7 9 11 12 13 14 15 20 30 40 50 80

W/(m/s) 28 38 56 68 88 88 92 88 88 70 41 60 90 120 120
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Considering ±30% variations in aerodynamic coefficients 

and ±10% variations in atmospheric density, the simulations 

are performed at the same given roll command. Fig. 7 and 

Fig. 8 show the responses and tracking errors of roll angle in 

various aerodynamic coefficients.

Obviously, the controller is still stable when there are 

variations in aerodynamic coefficients. The maximum peak 

overshoot of all curves is about 0.9 degree, or 2.25% of the 

40-degree commanded roll angle. Also, the tracking errors 

all follow the same trend when exponentially stabilized.

6. Conclusion

This paper presented a nonlinear, time-varying controller 

design for an MaRV using the trajectory linearization 

method. The nonlinearity, coupling and time-varying 

characteristics of the MaRV pose great challenges to the 

 
Fig. 7. Responses of roll angle in ±30% variations. 

 

Fig. 8. Tracking errors of roll angle in ±30% variations. 
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Fig. 8. Tracking errors of roll angle in ±30% variations. Fig. 8. Tracking errors of roll angle in ±30% variations
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controller and TLC provides a satisfactory solution for the 

MMRCS. The controller structure exhibits considerable 

inherent robustness and decoupling capability without 

high actuator activity, providing a useful framework to deal 

with MaRV problems. Simulation shows that the controller 

is capable of dealing with different instructions. Although 

the controller is designed only for nominal aerodynamic 

coefficients, excellent performance is verified for wind 

disturbances and ±30% variations of the aerodynamic 

coefficients. It is this “plug-and-play” feature that is highly 

preferential for developing, testing and routine operating of 

the re-entry vehicles.

Future research plans include improving controller 

performance by: (i) using a nonlinear observer to take 

advantage of the ignored disturbance term ds for a better 

output-feedback and (ii) 
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and (ii) ( )i t is a time-varying coefficient and time variation bandwidth (TVB) method 

should be taken into account. In particular, (i) should prove effective in overall tracking 

performance. 
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