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Abstract

The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss’ and Cowell’s variational 

equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model 

is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag 

perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to 

approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman 

filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target 

vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR 

system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical 

simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include 

the navigation errors and trajectory dispersions. 
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1. Introduction

The autonomous rendezvous and docking of a satellite 

in orbit is one of the most essential technologies for future 

autonomous space transportation missions, such as 

International Space Station supply and repair, automated 

inspection, servicing, and assembly of space systems. 

However, in most space programs, the rendezvous and 

docking is currently achieved by manual operations. 

Autonomous proximity operations are required for a large 

number of future mission concepts, but they cannot be 

achieved routinely at present. The interest in autonomous 

rendezvous and proximity operations has increased with 

the recent demonstration of XSS-11, Demonstration of 

Autonomous Rendezvous Technology (DART), and Orbital 

Express. Autonomous rendezvous and proximity operations 

have also been demonstrated by Japanese EST-VII and the 

Russian Progress vehicles. In addition, future missions to 

the ISS will require autonomous rendezvous and proximity 

operations [1, 2].

Many relative motion modeling and control strategies 

have been designed using the linearized Clohessy-Wiltshire 

(CW) equations to describe the relative motion between 

satellites. The CW equations are valid, if two conditions are 

satisfied: (1) the distance between the chaser and the target 

is small compared with the distance between the target and 

the center of the attracting planet, and (2) the target orbit 

is near circular [3]. The CW equations do not include any 

disturbance forces- for example, gravitational perturbations 

and environmental forces (solar radiation pressure and 

atmospheric drag). Alternative linear equations that have 

been used in the literature to model the relative motion are 
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the Tschauner-Hempel (TH) equations [4], which generalize 

the CW equations and are similar to them in their derivation 

and types of applications. Tschauner and Hempel derived 

theses equations from the viewpoint from rendezvous 

of a spacecraft with an object in an elliptical orbit. They 

found complete solutions for elliptical orbits, in terms of 

the eccentric anomaly. This advancement was followed by 

additional papers that presented the complete analytical 

solution explicit in time, expanding the state transition 

matrix in terms of eccentricity [5-11]. These solutions are 

used to analyze the relative motion between the chaser 

and the target vehicles in the relative frame of motion more 

efficiently and rapidly than solving the exact nonlinear 

differential equations in the inertial coordinate system. 

However, the TH equations do not take into account any 

perturbation forces, though they have significant effects on 

the satellite relative motion.

As an attempt to overcome the previous limitations of the 

CW and TH models, this paper proposes an innovative linear 

model that includes both J2 perturbation that reflects the 

Earth oblateness effect and atmospheric drag perturbation 

in the Cartesian coordinates orbital frame with little 

complication. Especially in low Earth orbits (LEOs), these 

perturbations have deep influence on the relative dynamics. 

Their inclusion in the linear model can sensibly increase the 

performance of the linear filters, which allows greater insight 

of satellite relative motion and provides an opportunity to 

investigate alternative feedback control strategies for the 

proximity operations.

This paper uses an extended Kalman filter formulation 

to estimate the relative position/velocity of the chaser 

vehicle, by utilizing the range and angle measurements 

from a simulated LIDAR system [12-16]. The Kalman 

filter basically consists of two main stages. The first stage 

is the propagation stage where the states are propagated 

numerically based on the proposed linear model. The 

second stage comes in when the measurements from the 

LIDAR system are available, and it is used to update the 

states from the first stage. The corresponding measurement 

models, process noise matrix, and other filter parameters 

are provided. Thrusters are assumed for translation control. 

The effects of the navigation filter and control algorithms 

are included in the analysis.

The objective of this paper is as follows: (1) develop 

a linearized high fidelity model for relative motion in a 

perturbed orbit, (2) design a navigation filter that can 

determine the relative position/velocity between target 

and chaser vehicles and support closed-loop proximity 

operations and maneuvers, and (3) design a control system 

for the chaser vehicle either to approach towards or to depart 

from a target vehicle in proximity operations in a general 

perturbed orbit.

The analysis in the current paper is summarized as 

follows. First, Section 2 presents the dynamic equations of 

relative motion for the chaser with respect to the target in 

a general perturbed orbit, based on Gauss’ and Cowell’s 

variational equations. These equations of motion are 

developed in the inertial coordinate frame, as well as in the 

relative coordinate frame. In Section 3, a linear high fidelity 

relative motion model is derived to describe the relative 

motion in proximity operations, by taking into account the 

gravitational J2 perturbation and environmental atmospheric 

drag perturbation. In Section 4, the relative navigation 

using the extended Kalman filter and the controller design 

are presented based on this linear high fidelity model for 

relative motion. In Section 5, the accuracy and performance 

of the relative navigation and controller are illustrated 

through different numerical examples, and comparisons are 

made with the true nonlinear model. Finally, in Section 6 

conclusion is presented and suggestions are made for future 

work.

2. Relative motion dynamics

Consider an Earth-centered inertial (ECI) frame with 

orthonormal basis {iX, iY, iZ}. The vectors iX and iY lie in the 

equatorial plane, with iX coinciding with the line of equinoxes 

and iZ passing through the North Pole. Relative motion is 

conveniently described in a Local-Vertical-Local-Horizontal 

(LVLH) frame that is attached to the target spacecraft 

as shown in Fig. 1. This frame has basis {iX, iY, iZ}, with iX 

lying along the radius vector from the Earth’s center to the 

spacecraft, iZ coinciding with the normal to the plane defined 

by the position/velocity vectors of the target spacecraft, and 

iY=iZ×iX. The LVLH frame rotates with the angular velocity 

ω, and its current orientation with respect to the ECI frame 

is given by the 3-1-3 direction cosine matrix comprising 

right ascension of ascending node Ω, inclination i, perigee 

argument ω plus true anomaly f (Fig. 2). The angular velocity 

can be also expressed in terms of orbital elements and their 

rates.

Let the position of the chaser vehicle in the target’s LVLH 

frame be denoted by

ρ=xix+yiy+ziz, where x, y, and z denote the components 

of the position vector along the radial, transverse, and out-

of-plane directions, respectively. Then, the most general 

equations modeling relative motion are given by 

4 
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Fig. 1. Relative Motion Coordinates 

Fig. 2. Orbital Elements 

(1)
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where [fc]LVLH and [ft]LVLH are the external acceleration forces 

acting on the chaser and the target, respectively, in the LVLH 

frame of the target vehicle. ((
.
)) and ((

..
)) denote the first and 

second derivatives with respect to time.  

It is assumed that the external forces arise due to two basic 

groups of forces defined by the following equation.

5 
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following equation. 

� � ��� � �� � ��� � �� (2)

The first group of forces is due to gravitational effects, ��, atmospheric drag,���, and control, ��.
Since the Earth is not perfectly spherical, more accurate gravity models exist that take into account the 

Earth’s irregular shape. One irregularity that has a significant influence on space missions is the 

Earth’s bulge at the equator. This phenomenon is captured in the �� gravity model [17, 18]. The 

second group of forces, ��, is considered to be small forces due to the gravity fields of other planets, 

solar pressure, or venting  which also perturbs the spacecraft’s motion. These small forces are 

grouped together and modeled as normally distributed random variables with zero mean [14].  

In the literature, the most popular methods to model the spacecraft orbit are known as Cowell’s 

method and Gauss’ method [16, 17]. The Cowell’s method is basically defined by specifying the 

position (�� and velocity (�) vectors of the spacecraft in the inertial coordinate frame, while Gauss’ 

method is defined by an equivalent set of elements called orbital elements ( �� �� �� �� �� �) which 

correspond to the semi-major axis, eccentricity, inclination, right ascension of the ascending node, 

argument of periapsis, and true anomaly as shown in Figure 2.  

Table 1 summarizes the dynamic equations that are used to describe these methods. �. �I and

�. ����� denote that the forces are defined in the inertial and LVLH coordinate frames, respectively; �
and �� are the Earth gravitational parameter and the radius of the Earth, respectively; the terms �
and � refer to the magnitude of the position/velocity vectors, respectively; the quantity � denotes 

the magnitude of the angular momentum vector defined by � � � � � ; � , � , and �  are the 

components of the spacecraft position vector; �� is the atmospheric drag coefficient; � denotes the 

spacecraft cross sectional area; �  is the spacecraft mass; and �  is the atmospheric density. 

Exponential model is used to describe the Earth atmospheric density. This model and its 

corresponding parameters are defined in Vallado [17]. 
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defined by H=R×V; X, Y, and Z are the components of 

the spacecraft position vector; CD is the atmospheric 

drag coefficient; A denotes the spacecraft cross sectional 

area; m is the spacecraft mass; and ρ is the atmospheric 

density. Exponential model is used to describe the Earth 

atmospheric density. This model and its corresponding 

parameters are defined in Vallado [17].

In order to use the generalized relative dynamic model 

defined by Equation (1), the angular velocity vector, ω, and 

the angular acceleration vector, 

6 
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This matrix is used in the next section as a part of the 

extended Kaman filter to propagate the states forward in 

time and to compute the filter parameters.

For close proximity operations, a proportional-derivative 

(PD) controller is employed for the translation control. 

The translation control algorithm computes the required 

continuous thrust fc, based on the previous linear model, 

to track the desired trajectory specified by the following 

guidance algorithm.  
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extended Kalman filter for the estimation purpose and PD 

controller for maneuver targeting. Orbital elements of the 

target are maintained by numerically propagating the Gauss’ 

variational equations with J2 and drag perturbations with 

respect to time. These orbital elements are used to compute 

the transformation matrix of the target vehicle with respect 

to the inertial frame and to assist in estimating LIDAR 

measurements. 

4.1 Extended Kalman Filter

An extended Kalman filter is derived from the nonlinear 

models, as illustrated in the equations below [12].
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Here, the state vector  can represent relative position/velocity of the chaser as well as other 

parameters that need to be estimated for the use by other flight algorithms. The time derivatives of the 

states  are functions of the states, inputs, time, and additive process noise . This process noise is 

used to approximate the unmodeled disturbances and other random disturbances to the dynamics. The 

measurements  are modeled as functions of the states, time, and measurement noise . The 

process noise and measurement noise are normally distributed with zero mean and covariances  and 

, respectively.  

The following steps summarize the Kalman filter equations that are used to estimate the relative 

motion states, based on minimizing mean square of error. 

1. Enter prior state estimate  and its error covariance ,  and compute the Kalman gain 

(7a)

2. Update state estimate by measurement 

(7b)

(7c)

3. Compute error covariance for updated state estimate 

(7d)

4. Project ahead 

(7e)
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and covariances Q and Rk, respectively. 
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minimizing mean square of error.
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In Equation (7), � denotes the � � � identity matrix, �� is the state transition matrix, and �� is the 

measurements of partial matrix that represents the sensitivity of the measurements to changes in the 

states.  
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where ��, ��, and �� denote the standard deviation uncertainties of the relative position components, 

and ��� , ��� , and ���  are those of the relative velocity components. The coefficient � refers to the 
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Here, ���� , ��� , and ���  are the standard deviations for the random unmodeled acceleration 

disturbances that act on the relative motion, and �� is the sampling time period. 

(7f)

In Equation (7), I denotes the 6×6 identity matrix, ϕk is the 

state transition matrix, and Hk is the measurements of partial 

matrix that represents the sensitivity of the measurements to 

changes in the states. 

By following the steps of References 12, 14, 15, and 19, the initial 

error covariance matrix P- 
0, which represents how accurately the 

initial relative position/velocity of the target is known, is given by
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those of the relative velocity components. The coefficient ε 
refers to the uncertainty correlation coupling between the 

relative position/velocity components in the LVLH coordinate 

frame, and it ranges between a positive and negative one. 

The discrete process noise matrix Qk of the relative motion 

can be approximated by [14, 15]
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Here, σwx, σwy, and σwz are the standard deviations for the 

random unmodeled acceleration disturbances that act on 

the relative motion, and ∆t is the sampling time period.

4.2 Measurement Model

One of the most important components of the filter 

is the measurement partial matrix Hk which is used in 

updating the states and error covariance matrices with 

the measurements. Fig. 6 depicts the LIDAR line of sight 

measurements that are processed by the filter as follows: 
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LVLH reference coordinate frame as  
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In particular, rewriting the measurement Eq. (10) in the standard form of the Kalman filter vector 
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Variables vα, vβ, and vρ are azimuth, elevation, and range 

measurement noises, respectively. In the absence of any 

other more suitable model of noise, these noises are assumed 

to be white, with zero mean and the standard deviations 

being equal to σα, σβ, and σρ, respectively. 

The unit line of sight vector can be written as a function 

of the relative position vector in the chaser LVLH reference 

coordinate frame as 
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and the associated measurement noise covariance matrix for the Kalman gain computations is  
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5. Simulation Examples 

The key metrics of the analysis fall into three main categories. The first is navigation performance, 

which is how well the states are estimated by the filter. This metric is measured by the navigation 

error, the difference between the true states and the filtered states. The second is trajectory control 

performance, which is a measure of how closely the chaser vehicle is able to follow the guidance 

algorithms. The third is the fuel performance, or �� usage, and it is computed based on the linear 

model developed in previous section. 

The preceding guidance, navigation, and control algorithms are illustrated now through different 

examples. Initial conditions for simulation are listed in Tables 4 and 5. 

Table 4. Navigation Filter Parameters 

A Simulink model is built using MATLAB software to demonstrate the closed-loop guidance 

transfer of the chaser to approach and/or to depart from the target vehicle in any orbit, either circular 

or elliptic, given the uncertain initial conditions, noisy measurements, and limited dynamics. This 

model consists of three main parts, guidance, navigation, and control, and it is based on the closed 

loop GN&C system block diagram shown in Fig. 4. The proposed LTV is used in the design of 

navigation filter and maneuver targeting of the guidance system. The required control thrust is 

produced based on a PD closed loop GN&C system.
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block diagram shown in Fig. 4. The proposed LTV is used in 

the design of navigation filter and maneuver targeting of the 

guidance system. The required control thrust is produced 

based on a PD closed loop GN&C system.

Table 4. Navigation Filter Parameters

Dear Madam or Sir, 

Thanks you so much for your efforts. 

Please note the following in the final revised paper 

1. Page 116, Eq. (5b) – Please replace �� and �� by ���� respectively (subscript font is normal). 

�� � ��������� ��� � ����� ���� (5b)

수식 5b 교체~~ 

2. Page 118, Eqs. (7) – Please center them 

 수식 7은 모두 가로 정렬 

3. Page 118, Eq. (11) – Please replace the numerator 1 by normal font to be 1 

수식 11번 교체~ 

���� � �
����
��
� � �

����������
� � ��� � � 1

��� � �� � �� �
�
�
�
� (11)

 
4. Page 119, Table 4. – Please replace �� and �� by �� and �� respectively (subscript font is 

normal). 표 4 교체~~ 

Table 4. Navigation Filter Parameters 

Parameter Value 

Initial Relative Position and 
Velocity Uncertainties 

�� � �� � �� � ���� m
��� � ��� � ��� � ���1 m/s

Process Noise 
��� � ��� � � � 1��� m/s� �⁄

��� � � � 1��� m/s� �⁄

Measurements Noise �� � �� � ���� ���� �� � ����m
Controller Parameters �� � 1 �� ���⁄ � �� � ���
Simulation Step 0.1 s 

Measurements Update 1 Hz 

 
5. Page 121, Fig. 8 – Please remove/erase the label border for the Time, sec vs �� , m/s graph (first 

graph in the second row) 
 

그림 8번 교체~~ 
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In order to evaluate the accuracy of the proposed LTV 

model, compared to other analytical closed form solution 

such as TH model, a simulation test case has been considered. 

Fig. 5 shows the time history of the magnitude of relative 

position/relative velocity for the full nonlinear numerical, 

linear time varying (LTV), and linear analytical TH models 

of the chaser with respect to the target in low Earth eccentric 

orbit. It can be seen from the simulations that the proposed 

LTV model is more accurate than TH model over the time. 

The performance of the navigation system is shown in 

Figs. 6 and 7. In this case, the thrusters are off, and both the 

target and chaser vehicles are in the same neighborhood (see 

Table 5). Fig. 6 shows the relative position/relative velocity 

between the vehicles during simulation. Fig. 7 depicts how 

accurately the navigation system can estimate the chaser’s 

relative position/velocity. From this figure, the filter is able 

to converge within a few seconds, and the relative position/

Table 5. Vehicles Orbital Elements

21 

Table 5. Vehicles Orbital Elements 

Parameter Target Chaser 

�, �� 6723.2576 6723.2576 

� 0.1 0.1 

�, deg 51.6467 51.6467 

, deg 188. 0147 188. 0147 
�, deg 174.3022 174.3022 
�, deg 270.0882 270.0832 
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Fig. 5. High Fidelity LTV vs. TH vs. Full Nonlinear Numerical models Fig. 5. High Fidelity LTV vs. TH vs. Full Nonlinear Numerical models
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Fig. 6. Relative Motion Without Fig. 6. Relative Motion Without ∆V
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velocity can be accurately estimated within 0.5 m and 0.005 

m/s, respectively.

Now simulation is presented for two types of glideslope 

trajectories, considering an eccentric orbit of the target. First, 

the inbound glideslope, in which the chaser is approaching 

the target vehicle, is shown in Figs. 8 and 9.  The chaser is 

28 

Fig. 7. Relative Motion Navigation Performance Without 
Fig. 7. Relative Motion Navigation Performance Without ∆V

 
 

Fig. 8. Relative Motion Inbound/Outbound Scenario using PD Control 

 
6. Is it possible to center all Tables and Figures tiles?  

 

Best regards 

Fig. 8. Relative Motion Inbound/Outbound Scenario using PD Control
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located at station [58 -580 0] m, from which it is commanded 

to approach the target at [0 -100 0] m. The relative position/

velocity errors and ∆V continuous burns of the chaser are also 

shown in these figures. Second, the outbound glideslope is 

presented in the same figures in which the chaser is departing 

from the target. In these figures, the chaser starts to depart 

away from 100 m behind the target, leading to a new location 

of 1000 m behind the target. The corresponding performances 

of guidance, navigation, and control for the outbound 

accelerating glideslope are also shown in these figures. Each 

segment of the glideslope is followed by 3 minutes of station 

keeping, in which no thrust force is applied. From these 

figures, it is obvious that the PD design approach is successful 

in tracking a specific guidance trajectory.

The continuous thrust ∆V is calculated by using the 

estimated relative position/velocity, either from the Kalman 

filter or from the knowledge of initial conditions, and not 

with the true relative position/velocity of the chaser. As 

such, the chaser is not expected to reach its intended place 

exactly, but in the neighborhood thereof. Aided by the 

sensors, the initial estimation errors subside to an optimal 

level determined by the ratio of the process noise matrix 

Qk and the measurement noise matrix Rk defined earlier. 

Due to the active range and angle measurements from the 

LIDAR system and relatively small measurement errors, the 

true and the estimated relative position/velocity states are 

almost indistinguishable, as seen in the previous figures 

during the steady state.

6. Conclusion 

The results of this study indicate that the proposed linear 

model is clearly effective in estimating the relative position/

velocity and controlling the relative trajectory. This model 

is not restricted to circular orbits, but it can be used as 

well for eccentric orbits. Furthermore, by using this model, 

simple guidance algorithms for glideslope are developed to 

autonomously approach and depart from a target vehicle. 

The relative navigation in this study utilizes range, azimuth, 

and elevation measurements, as well as an extended Kalman 

filter. However, uncertainties like measurement biases and 

sensor misalignments are not considered here. In addition, 

an analyst must consider the attitude dynamics of chaser and 

target, their attitude determination, and attitude control of 

the chaser, in order to fire the thrusters in the right direction. 

These topics and others will be addressed in the future. 
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