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Abstract

The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system 

based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of 

the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, 

based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of 

the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of 

the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller 

which is function of input variables. The coupling between variables and linear matrices make the control system design 

problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and 

iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality 

of the presented design techniques is validated.
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Nomenclature

e	 Integration of overload error

α	 Angle of attack of interceptor

ωz	 Pitch angle rate of interceptor

aij 	�� Aerodynamic force coefficients and aerodynamic 

moment coefficients

v 	 Speed of interceptor

g 	 Acceleration of gravity

nzc   	 Command of overload

A     	 State matrix

B     	 Control matrix

x    	 System state vector

u    	 Control input vector

K      	 State feedback controller

Sat(.)	 Saturation limitation

ρ    	�� Saturation value of the Rudder deflection angle 

or angle rate

P,W,G,H 	 Positive definite matrices 

V(x)   	 the pseudo-Lyapunov function

Ac     	 Closed loop system matrix
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system because of the natural frequency of missile is far 

higher than 1Hz, the actuator can be regarded as first-order 

inertial module[1-2]. However, the natural frequency of the 

near space intercept missile is lower than 1Hz. A higher gain 

controller is needed to enhance the response speed of the 

interceptor control system. With the increase of the flight 

altitude, the maneuverability of interceptor is decreased 

because of the saturation nonlinear characteristics of the 

actuator, so it is difficult to design the linear control system 

with actuator saturation constraints for the near space 

intercept missile that can track the command more quickly 

and accurately.

The tracking control system design is one of the most 

popular control problems in engineering[7-9], including 

accurate tracking based on model reference adaptive 

control[3-4] and the standard optimal tracking control (the 

reference input signals are regarded as the disturbance 

signals[5-6]), but they ignored the nonlinear of the actuator. 

The neglected actuator saturation is the source of limit 

cycle, parasitic equilibrium points and even instability of 

the closed loop system[5-6]. David h. Klyde[10] pointed 

out that when the actuator has saturation phenomena, 

the stability of the control system dependent on the input 

variables. It is considered that the controller is a function 

of the input variables  to maintain the stability of the 

control system and improve the time response speed of the 

nonlinear system.

Section 2 introduces the integration of overload error 

, given the classic three-loop autopilot structure and 

establishment of the linear tracking system mathematical 

model. Section 3 presents the properties of the linear 

tracking system in which the maximum value of the 

pseudo-Lyapunov function for linear tracking system 

appeared at the steady states instead of the initial states 

based on Bounded stability theory. Section 4 extends 

this character to the case when the linear control system 

with control input saturation constraints, presents the 

controller as a function of input variables. According to 

the Shur complement lemma and iterative algorithm, 

the non-convex problem is converted into a convex 

LMI. Simulation results are presented in Section 5 

to demonstrate the methods, and Section 6 presents 

concluding remarks.

2. ��The Interceptor Model and Autopilot 
Structure

Ignoring the dynamic characteristics of the actuator, 

the longitudinal state space model of the interceptor is 

given: 
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Where  — Angle of attack of interceptor; z — Pitch angle rate of interceptor; ija —Aerodynamic 

force coefficients and aerodynamic moment coefficients. 

The classic three loops autopilot structure and the mathematical model are given. The autopilot 

structure is shown in Fig.1, in which the pitch angle rate feedback loop can upgrade the low damping 

of the missile; the pseudo Angle of attack feedback loop can improve the static instability of the 

missile and increase time response. In order to realize accurate tracking of the instructions, the 

overload error integral variables are introduced [8, 12]: 
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Remark1: in Fig.1 the command of overload regarded as the input signals, the controller are 

proportion and integration controller; in Fig.2 the command of overload and the integration controller 

regarded as the systems model, the controller is pure proportion controller. Integration Control of 

overload error converted into proportion control of overload error integration, which yield static 

output feedback control, this can resort to solving LMIs. 
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Where: v —  Speed of the interceptor; g—  Acceleration of gravity; zcn —  Command of the 

overload. 
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Where zcn is overload command, i is the value of the rudder saturation and  1 0 0 TE   . 
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Through state transitions (27) is equivalent to (17). 

According to the norm of the definition that iK x  can be rewritten as: 

2 2T T
i ix K K x                                           (28) 

According to the function properties of the linear tracking system, suppose there 
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Applying the Schur complement lemma and state transform that (30) is equivalent to (18). 

4.2 Linearization of the control system 

We discuss now how to compute the matrices gain K form the conditions stated in theorem 4. The 

variables to be found by applying theorem 4 are , , , , , , , , , iW Z Y S       . Since the inequalities terms 

involving the product between these variables, inequalities (15) ~ (18) are nonlinear matrix 

(26)

Pre and post-multiplying (23) by diagonal matrix diag{W, 

S}, and taking into account the variable transformations 

P=W-1, S=T-1, it follows that (16).

Suppose there exist σ satisfying the following condition:
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Fig.8. The rudder angle rate response curve (Typical point 1) 
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Fig.9. The controller gains curve according to time (Typical point 1) 
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First: according to the ideal frequency response of the 

closed-loop system, fix the value 

10 

inequalities. In order to put the non convex optimization problem is converted into a convex 

optimization problem, an iterative algorithm is given as following. 

First: according to the ideal frequency response of the closed-loop system, fix the 

value   0 0,t     . 

Second: given the initial value 0 0,     , in this case, the matrix inequalities of the theorem 4 

become LMIs. The eigenvalues of the variable W can be minimized by solving the convex 

optimization problem, in order to enhance the time response speed of the control system: 

 
   

min
: 14 ~ 18

W
st LIMs





                                     (31) 

Third: Fixed 0W W , the matrix inequalities of the theorem 4 (14) ~ (18) are converted into LMIs, The 

variables value of the  、  can be minimized by solving the following convex optimization 

problem with LMI constraints: 

  
   

min 1

: 14 ~ 18st LIMs

     



                                    (32) 

In each step, some variables are fixed and a convex optimization problem with LMI constraints is 

solved: 

Step 0: Initialize   0 0 0 0, , ,t           , according to the ideal frequency response of the 

closed-loop system. 

Step 1: solve (31) forW . 

Step 2: fixed valueW , solve (32) for ,  . 

Step 3: take the positive value of  such that   , let      back to step 1 until no 

significant change in the optimal value of   occurs.  

The iteration between these three steps stops when a desired precision for  is achieved. 

Remark2: When 0 1   the actuator of the control system does not appear the saturation 

phenomenon, when 0 1  the actuator of the control system appear the saturation phenomenon. 
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the actuator of the control system appear the saturation 

phenomenon.

5. Simulation and Results

Typical flight point 1: The flight height of the interceptor 

is H=33 km, the speed is 3.5 Ma, Angle of attack is 20 deg, 

the rudder deflection angle saturation is ±30° and the 

rudder deflection angle rate saturation is ±500°/s. When 

normal acceleration command is 2g, Fig.5 show the overload 

response curve, Fig.6 show the Angle of attack response 
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Fig.8. The rudder angle rate response curve (Typical point 1) 
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Fig.9. The controller gains curve according to time (Typical point 1) 
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Fig.10. The normal acceleration response curve (Typical point 2) 

     

Fig. 9. �The controller gains curve according to time (Typical point 1)
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Fig.9. The controller gains curve according to time (Typical point 1) 
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Fig.10. The normal acceleration response curve (Typical point 2) 

     Fig. 10. �The normal acceleration response curve (Typical point 2)
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 Fig.11. The attack angle response curve (Typical point 2) 
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Fig.12. The rudder angle response curve (Typical point 2)      
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 Fig.13. The rudder angle rate response curve (Typical point 2) 
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Fig.12. The rudder angle response curve (Typical point 2)      
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curve, Fig.7 show the rudder angle response curve, Fig.8 

show the rudder angle rate response curve, and Fig.9 shows 

the controller gains curve according to time.

Typical flight point 2: The flight height of the interceptor 

is H=30 km, the speed is 4 Ma, angle of attack is 20 deg, and 

the rudder deflection Angle saturation is ±30° and the rudder 

deflection angle rate saturation is ±500°/s. When normal 

acceleration command is 7g, Fig.10 show the overload 

response curve, Fig.11 show the Angle of attack response 

curve, Fig.12 show the rudder angle response curve, Fig.13 

show the rudder angle rate response curve, and Fig.14 shows 

the controller gains curve according to time.

The simulation results of the linear control system with 

actuator saturation constraints show that with the increase 

of altitude and reduce of flight Mach, the time response 

speed of the control system and the ability of tracking the 

normal acceleration command significantly deteriorate. 

The Controller is a function of the input command, so fast 

tracking of input command can be realized.

6. Conclusions

The design control system of the near space intercept 

missile makes it track the command more quickly and 

accurately when the control input has saturation constraints. 

We described the classic three-loop autopilot structure and 

the linear tracking system mathematical model, in which 

Integration Control of the overload error is converted into 

proportion control of the overload error integration, which 

yields static output feedback control, this can resort to 

solving LMIs. We present the maximum value of the pseudo-

Lyapunov function for the linear tracking system (theorem 3). 

This appeared at the steady states instead of the initial states 

based on  theorem 1~2 and the Bounded stability theory. 

The time-derivative of the function (e.g. (10)) contains the 

input command, so the amplitude and frequency of the 

command affect the stability of nonlinear control system, 

designate expected closed-loop poles area for different 

input commands and obtain a controller which is function 

of input variables. The coupling between the variables and 

linear matrices ((15) ~ (18)) make the control system design 

problem non-convex. The non-convex problem is converted 

into a convex LMI according to the Shur complement lemma 

and iterative algorithm. Finally two examples of the typical 

flight points verify the effectiveness of the presented design 

technique. The proposed design method can be applied to 

the horizontal lateral-directional system model and arbitrary 

controllable system. 

References

[1] XING Li-dan, CHEN Wan-chun, “Autopilot Design 

for Missile Controlled by Lateral Thrust/Aero Force using 

Combined Optimal/Classical Approach”, Journal of Beijing 

University of Aeronautics and Astronautics, Vol.35, No.08, 

pp.921-924.

[2] CHANG Chao, LIN De-fu, “Pole Assignment Method 

with State Constraints for Missile Three-loop Autopilot 

Design”, Chinese Control and Decision Conference, Guilin, 

2009, pp. 3298-3301.

[3] ZHANG Wei-guo, LIU Xiao-xiong, “Design of a Robust 

Adaptive Reconfigurable Flight Control System Using 

Multiple Controller”, Journal of Northwestern Polytechnical 

University, Vol.25, No.1, pp.103-107.

[4] Nishant Unikrishnan, “Missile Longitudinal Autopilot 

Design Using a New Model-Following Robust Neuro-

Adaptive Controller”, AIAA Guidance Navigation and Control 

Conference and Exhibit, Rhode island, 2004, pp.1-12.

[5] FEN Wu, K.M. Grigoriadis, “LPV Based Control of 

17 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

10

15

20

25

30

Time(s)


( 

)

 
 Fig.11. The attack angle response curve (Typical point 2) 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

(
ra

d)

c



 
Fig.12. The rudder angle response curve (Typical point 2)      
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