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Abstract

This work uses different finite element approaches to the free vibration analysis of reinforced shell structures, and a simplified 

model of a typical launcher with two boosters is used as an example. The results obtained using a refined one-dimensional 

(1D) beam model are compared to those obtained with commercial finite element software. The 1D models that are used in 

the present work are based on the Carrera Unified Formulation (CUF), which assumes a variable kinematic displacement 

field over the cross-sections of the beam. Two different sets of polynomials that correspond to Taylor (TE) or Lagrange (LE) 

expansions were used. The analyses focused on three reinforced structures: a stiffened panel, a reinforced cylinder and the 

complete structure of the launcher. The frequencies and natural modes obtained using one-dimensional models are compared 

to those obtained from classical finite element analysis. The classical FE models were built using a beam-shell or solid 

elements, and the results indicate that the refined beam models can in fact be used to investigate the behavior of very complex 

reinforced structures. These models can predict the shell-like modes that are typical of thin-walled structures that cannot be 

detected using classical beam models. The refined 1D models used in the present work provide results that are as accurate as 

those from solid FE models, but the 1D models have a much lower computational cost. 
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1. Introduction

Launchers have been and will be essential for past and 

future space exploration as well as for putting satellites in 

orbit to provide communications and to observe the Earth. 

Launchers are made using reinforced thin-walled structures 

that are very complex and must survive under severe loading 

conditions. Therefore, it is necessary to develop advanced 

numerical tools to reduce the computational cost of the 

complex experimental activities that are required during 

structural design.

Computational tools have been used since the sixties to 

predict the dynamic characteristics of rockets and launchers. 

Wempner and Wilms [1] developed a rigid body model 

with six degrees of freedom (DOF) to model the dynamic 

characteristics of multi-staged, free-flight, ballistic rockets. 

Unfortunately, the capabilities of computers of that time 

were not sufficient to conduct an analysis of very complex 

structures. Modal synthesis or component mode techniques 

were thus widely used to conduct a dynamic analysis of 

large structures by dividing these into substructures or 

components. In 1963, Przemieniecki [2] introduced a 

matrix approach to evaluate the stresses and deflections 

in an aircraft structure composed of a number of sub-

structural components. Each sub-structure was first analysed 

separately, and then equilibrium equations at the boundaries 

were used to ensure the congruence of the different sub-

structures. In 1965, Hurty [3] conducted a dynamic analysis 

of complex structural systems by using a component modes 

approach. The generalized matrices for the mass, stiffness 

and damping were determined for each component, and 

the congruence equations were used at the interface to fulfil 

the requirements for continuity. At that time, Craig Bampton 

[4] proposed a method to study a complex structure as an 
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assemblage of various sub-structures by considering basic 

mass and stiffness matrices. The conditions for geometrical 

compatibility were used along the boundaries of the sub-

structures, and the Rayleigh-Ritz procedure was used to 

reduce the total number of DOFs. In 1970, Grimes et al. [5] 

performed an experimental test campaign on a 1/10 scale 

model to evaluate the dynamic behaviour of the Saturn V 

launcher and compared the results obtained with those 

obtained using theoretical models. In 1971, Benfield and 

Hruda [6] presented a method to determine the natural 

modes of a complex structure by means of the component 

vibration modes. In this case the modes for each sub-

structure were separately determined and were then used 

to synthesize the global model. The number of modes that 

were introduced for each component can be truncated, 

and in this way, the number of generalized coordinates 

that are required for a dynamic analysis can be reduced. 

Goldenberg and Shapiro [7] formulated and evaluated 

various approaches that coupled two or more simple sub-

structures in order to investigate complex systems using 

data obtained by analysing individual components. In 1976, 

Agrawal [8] used a model synthesis technique to investigate 

the normal modes, natural frequencies and dynamic 

responses of a three-dimensional complex structure with 

flexible joints. The equations of motion were developed by 

means of Lagrange’s equations. Thornton [9] determined 

the natural frequencies and the modal shapes of a 1/15 

scaled Space Shuttle using a beam model by representing 

the stiffness and mass properties of the physical structure. 

In 1989, Urgueira [10] analysed a sub-structures coupling 

technique that incorporates the data available from the 

modal experimental test. Two coupling approaches were 

investigated: impedance and modal coupling techniques. 

The two techniques were compared to determine the main 

sources of errors in predicting the dynamic behavior that is 

to be identified.

Nowadays, very fast computers and clusters are available, 

and these enable the analysis of highly complex structures. 

However, the methods mentioned above are still used during 

the preliminary design of a structure. Finite Element Models 

(FEM) can be used to analyze very complex structures, 

including mechanical parts, engines, aircraft frames, 

and complete launcher structures. In 1996, Friswell and 

Mottershead [11] presented a book on the finite element 

model where data acquired from an experimental vibration 

test was used to update the numerical model. Buehrle et 

al. [12] used an FE model to conduct the static analysis of 

an aircraft fuselage by considering beams, plates and solid 

elements within the same model. In 2009, Hu et al. [13] 

conducted a structural dynamics analysis of a sounding 

rocket during the lift-off phase, and the nose fairing, payload, 

ground support frame and boosters were included in the full 

finite element model. De Vivo et al. [14] used an alternative 

method to carry out the dynamic analysis of complex 

structures in 2010 by using the natural excitation technique 

in order to achieve the modal parameters from the wind 

force for the Vega launcher, which is the new European 

launcher. In 2013, Fransens et al. [15] adopted operational 

modal analysis tools to verify the performance of a solid 

rocket booster of the Vega Launcher. One year later, Işik et al. 

[16] published an article on using a finite element model to 

model of complete launcher system by considering both the 

normal vibration modes and the constraint modes.

The complete schema of a launcher, see Fig. 1, can be 

discretized using classical elements where both longitudinal 

and transversal stiffeners and skins are used to both 

withstand the high levels of stress and to reduce weight. 

Moreover, this configuration allows for concentrated loads 

to be applied and openings to be introduced into the 

structure. These structures are highly complex and require 

the use of Finite Element Methods (FEM) where solid 

(3D), shell (2D) and beam (1D) elements can be used to 

describe the kinematics of the components. Another issue 

that is important when modelling reinforced structures 

is to properly represent the configuration of the structure 

according to the technological process that is used to build 

it. The stiffness of the interface between the skin and the 

reinforcements can be affected by the coupling approach 

that is used between the two components. Two different 

methods are generally used, one involves the use of rivets 

or welding and the latter uses Computer Numerical Control 

(CNC) techniques. The two different joints are shown in Fig. 

2. When a CNC approach is used, such as milling (Fig. 2a), 

continuity is guaranteed between the panel and the stringer. 

On the other hand, as is shown in Fig. 2b, classical joints can 

be used as welding and rivets, and the congruence of the 

displacements can be verified only in part of the interface.  
 

 
 

 
 
 
 

Fig. 1: Example of a thin-walled reinforced structure: a launcher structure. 

Fig. 1. ��Example of a thin-walled reinforced structure: a launcher structure
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Moreover, the joints may have a lower strength than that of 

the original material. When stringers and skin are a unique 

component, only solid elements are representative of the 

structure (see Fig. 3a), and the results can be very accurate. 

If the structure is welded, shell and beams elements can be 

used to simulate the mechanical behaviour (see Fig. 3b and 

c), introducing acceptable errors in both the discretization 

and the results. However, 2D-1D elements are normally used 

because 3D elements introduce a high number of DOFs. In 

this sense, the refined 1D models that are introduced in this 

work are very attractive because they ensure the structural 

continuity between the skin and the stringers as a solid 

model and provide a quasi three-dimensional solution 

with a lower number of DOFs. In fact, the geometrical 

aspect-ratio should not exceed the critical value when solid 

elements are used. Therefore, when thin-walled structures 

are considered, a higher number of elements is required 

as a result of the small dimension of the thickness. The use 

of refined one-dimensional models splits the solution into 

two components, one along the beam axis and one over the 

cross-section. Therefore, there are no limitations to the value 

of the aspect-ratio. When 1D-2D FE models are used, the 

introduction of stringers requires the use of classical beam 

elements that do not provide accurate local results.

There are a number of efficient computational methods 

that can be used to analyse reinforced shell structures, and 

this work considers the one-dimensional variable kinematic 

finite element formulation based on the Carrera Unified 

Formulation (CUF). The CUF was initially developed for 

plate/shell models [17, 18, 19] and was later extended to one-

dimensional models [20]. When CUF is applied to a beam 

model, the displacement field is obtained as the product 

of two function expansions: one defined over the cross-

section and one along the beam axis. The Taylor expansion 

(TE) or Lagrange expansion (LE) can be used to describe the 

displacement over the cross-section. When TE is adopted, as 

shown by Carrera and Giunta [20] and Carrera et al. [21], the 

displacements are approximated using a global expansion 

around a point, which is usually the centroid of the cross-

section. Static and dynamic analyses using TE models were 

presented in Refs. [22] and [23]. When LE is adopted [24, 

25], the cross-section is discretized using the 2D Lagrange 

elements, and the displacements are expressed as a function 

of the displacements in the cross-sectional nodes, which are 

the only unknowns. The CUF allows the TE and LE models to 

be obtained without the need for ad hoc formulations. When 

TE is used, the order of the expansion N can be changed 

as a free parameter of the analysis. Classical models, such 

as Euler-Bernoulli and Timoshenko, can be obtained as a 

particular case of the TE formulation. When an LE expansion 

is considered, the solution can be improved using a quadratic 

element instead of a linear element or refining the mesh over 
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(2b) Welded 
 

Fig. 2: Comparisons of different connection between panel and reinforcement. 
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Fig. 2: Comparisons of different connection between panel and reinforcement. 
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Fig. 2. Comparisons of different connection between panel and reinforcement

 
 

 
 

  
(3a) Solid model 

 
 

 
 

 (3b) Shell-Beam Model  
 
 

 
 
 

(3c) 1D Refined model 
 
 

Fig. 3: Comparison between different approaches in the analysis of reinforced structures. 
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                                                  (a) Solid model                                (b) Shell-Beam model                                  (c) 1D Refinded model

Fig. 3. Comparison between different approaches in the analysis of reinforced structures

(206~222)14-077.indd   208 2015-07-03   오전 4:56:00



209

Erasmo Carrera    Accurate Free Vibration Analysis of Launcher Structures Using Refined 1D Models

http://ijass.org

the cross-section. In both formulations, the finite element 

method is used to solve the problem along the axis in order 

to handle arbitrary geometries, boundary and loading 

conditions. Refined one-dimensional models provide a 

quasi-3D solution, and the present model can provide local 

modal shapes on both skin and stringers. On the other hand, 

no accurate information is available for the stringers when 

2D-1D models are used. An example of these capabilities 

in shown in Refs. [26, 27], which present a component-wise 

(CW) approach that will be used in this paper. The higher-

order beam models used in the present work were applied 

to the dynamic analysis of a stiffened plate, a reinforced 

cylinder and the complete structure of the launcher. The 

stringers were placed along both the longitudinal and 

transversal directions, and the natural frequencies and 

modal shapes were used to verify the accuracy of the model. 

Particular attention was given to a comparison between the 

FE models built using the MSC NASTRAN® commercial code 

with both Solid and Shell/Beam elements.

2. Refined one-dimensional models

This section introduces a unified formulation for refined 

one-dimensional models, and for the sake of brevity only 

main features are reported in this work. More details can be 

found in Ref. [27].

2.1 Preliminary

The reference frame that was adopted is shown in Fig.4. 

The y-axis is the beam axis and the beam length is L. The 

displacement vector u(x, y, z) can be expressed through the 

ux , uy  and uz components as:
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Dy is the differential operator on beam axis y and DΩ represent the differential operator on the cross-section of 

the beam. Hook’s law can be used to derive the stress field by considering the elastic and the isotropic material (see 

Ref. [28]):

(1)

The superscript T denotes transposition. Similarly, the 

stress σ and the strain ε can be introduced as follows:
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Dy is the differential operator on beam axis y and DΩ represent the differential operator on the cross-section of 
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Fig. 4. ��One-dimensional model reference system.
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The Euler-Bernoulli beam theory (EBBT) can be derived by imposing a penalization on the shear terms (see 

[27]) in order to obtain: 
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The LE model exploits the Lagrange polynomials to build 1D higher-order models. In this case the cross-section 

is discretized using two-dimensional Lagrange elements, and two types of elements were adopted to analyze the 

structures that are considered in this paper, including the four-point elements (L4) and nine-point elements (L9). 

The L4 interpolation functions are linear and have the following form:
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L9 provides a quadratic approximation, and the functions are:
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Using LE, the unknowns are only the displacements of the cross-sectional nodes.

2.3. Finite element approximations 

The FEM is used to approximate the solution along the beam axis. If the shape functions Ni are introduced, the 

unknown displacement uτ(y) becomes:

   ii qyNyu )( (17)

where qiτ are the unknowns of the problem. The virtual variation of uτ(y) is denoted using the index j:
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Finally, the complete displacement field and its virtual variation can be written as follows:
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where indexes i and j indicate the node of the element along the y-axis. In this work, three- or four-node refined 

beam elements were used on the y-axis.

2.4. Governing Equations 

The governing equation can be derived using the Principle of Virtual Displacements (PVD) that assumes the 

following form in the case of the free vibration analysis:
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where Lint stands for the strain energy and Line is the inertial work. δ stands for the virtual variation. Lint can be 
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By splitting the integral on the volume V into two sub-integrals, one on the cross-section Ω and one along the 

beam axis l, Equation 23 becomes:
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Where Kijτs is the stiffness matrix in the form of the fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be found in Ref. [28].

The virtual variation of the Line is:

dVuuL
V

T
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where ρ is the density of the material and u  is the acceleration vector. Equation 25 can be rewritten using 

Equations 4 and 17:
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where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, and the indexes have the same meaning as that in the 

stiffness matrix. The global stiffness (K) and mass (M) matrices can be obtained assembling the fundamental 

nucleus evaluated for each combination of the indices. In conclusion, the PVD can be written as follows:

  0 KqqMq  (26)

where q is the vector of the nodal unknowns of the whole structure. Due to the linearity of the problem where 

harmonic solutions are introduced, it is possible to compute the natural frequencies (ωk) by solving the following 

eigenvalues problem:

  02  kk qKM (26)

Where qk is the k-th eigenvector, and k ranges form 1 to the total number of DOFs of the structures.

(24)

Where Kijτs is the stiffness matrix in the form of the 

fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be 
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found in Ref. [28].

The virtual variation of the Line is:
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Where Kijτs is the stiffness matrix in the form of the fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be found in Ref. [28].

The virtual variation of the Line is:
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where ρ is the density of the material and u  is the acceleration vector. Equation 25 can be rewritten using 

Equations 4 and 17:
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where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, and the indexes have the same meaning as that in the 

stiffness matrix. The global stiffness (K) and mass (M) matrices can be obtained assembling the fundamental 

nucleus evaluated for each combination of the indices. In conclusion, the PVD can be written as follows:

  0 KqqMq  (26)

where q is the vector of the nodal unknowns of the whole structure. Due to the linearity of the problem where 

harmonic solutions are introduced, it is possible to compute the natural frequencies (ωk) by solving the following 

eigenvalues problem:

  02  kk qKM (26)

Where qk is the k-th eigenvector, and k ranges form 1 to the total number of DOFs of the structures.

(25)

where ρ is the density of the material and 
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Where Kijτs is the stiffness matrix in the form of the fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be found in Ref. [28].

The virtual variation of the Line is:
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where ρ is the density of the material and u  is the acceleration vector. Equation 25 can be rewritten using 

Equations 4 and 17:
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where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, and the indexes have the same meaning as that in the 

stiffness matrix. The global stiffness (K) and mass (M) matrices can be obtained assembling the fundamental 

nucleus evaluated for each combination of the indices. In conclusion, the PVD can be written as follows:

  0 KqqMq  (26)

where q is the vector of the nodal unknowns of the whole structure. Due to the linearity of the problem where 

harmonic solutions are introduced, it is possible to compute the natural frequencies (ωk) by solving the following 

eigenvalues problem:

  02  kk qKM (26)

Where qk is the k-th eigenvector, and k ranges form 1 to the total number of DOFs of the structures.

 is the acceleration 
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Where Kijτs is the stiffness matrix in the form of the fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be found in Ref. [28].

The virtual variation of the Line is:
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where ρ is the density of the material and u  is the acceleration vector. Equation 25 can be rewritten using 

Equations 4 and 17:
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where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, and the indexes have the same meaning as that in the 

stiffness matrix. The global stiffness (K) and mass (M) matrices can be obtained assembling the fundamental 

nucleus evaluated for each combination of the indices. In conclusion, the PVD can be written as follows:

  0 KqqMq  (26)

where q is the vector of the nodal unknowns of the whole structure. Due to the linearity of the problem where 

harmonic solutions are introduced, it is possible to compute the natural frequencies (ωk) by solving the following 

eigenvalues problem:

  02  kk qKM (26)

Where qk is the k-th eigenvector, and k ranges form 1 to the total number of DOFs of the structures.

(26)

where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, 

and the indexes have the same meaning as that in the stiffness 

matrix. The global stiffness (K) and mass (M) matrices can be 

obtained assembling the fundamental nucleus evaluated for 

each combination of the indices. In conclusion, the PVD can 

be written as follows:
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Where Kijτs is the stiffness matrix in the form of the fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be found in Ref. [28].

The virtual variation of the Line is:
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where ρ is the density of the material and u  is the acceleration vector. Equation 25 can be rewritten using 

Equations 4 and 17:
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where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, and the indexes have the same meaning as that in the 

stiffness matrix. The global stiffness (K) and mass (M) matrices can be obtained assembling the fundamental 

nucleus evaluated for each combination of the indices. In conclusion, the PVD can be written as follows:

  0 KqqMq  (26)

where q is the vector of the nodal unknowns of the whole structure. Due to the linearity of the problem where 

harmonic solutions are introduced, it is possible to compute the natural frequencies (ωk) by solving the following 

eigenvalues problem:

  02  kk qKM (26)

Where qk is the k-th eigenvector, and k ranges form 1 to the total number of DOFs of the structures.

(27)

where q is the vector of the nodal unknowns of the whole 

structure. Due to the linearity of the problem where harmonic 

solutions are introduced, it is possible to compute the 

natural frequencies (ωk) by solving the following eigenvalues 

problem:
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Where Kijτs is the stiffness matrix in the form of the fundamental nucleus that is always characterized by a 3×3 

matrix. The explicit form of the fundamental nucleus can be found in Ref. [28].

The virtual variation of the Line is:
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where ρ is the density of the material and u  is the acceleration vector. Equation 25 can be rewritten using 

Equations 4 and 17:
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where the mass matrix Mijτs is a 3 × 3 fundamental nucleus, and the indexes have the same meaning as that in the 

stiffness matrix. The global stiffness (K) and mass (M) matrices can be obtained assembling the fundamental 

nucleus evaluated for each combination of the indices. In conclusion, the PVD can be written as follows:

  0 KqqMq  (26)

where q is the vector of the nodal unknowns of the whole structure. Due to the linearity of the problem where 

harmonic solutions are introduced, it is possible to compute the natural frequencies (ωk) by solving the following 

eigenvalues problem:

  02  kk qKM (26)

Where qk is the k-th eigenvector, and k ranges form 1 to the total number of DOFs of the structures.

(28)

Where qk is the k-th eigenvector, and k ranges form 1 to the 

total number of DOFs of the structures.

2.5 Matrices Assembly

The previous sections shows that the use of the CUF 

allows the matrices to be written in terms of the fundamental 

nuclei, and these 3×3 matrices can be used to build the 

global stiffness and mass matrices. Fig. 5 shows the assembly 

procedure. The assembly of the matrices requires the use of 

five loops. The first loop is of the element number. Once the 

element is fixed, two loops on indexes i and j are required, 

and these indexes are related to the node of the beam 

element. Finally, given i, j and the element number, it is 

possible to perform two loops on indexes τ and s to represent 

the expansion over the cross-section.

Calculating the matrices requires the fundamental 

nucleus to be evaluated for each index combination. 

This procedure can easily take advantage of the parallel 

processing to reduce the computational time. The matrices 

that are obtained are symmetric banded matrices, and this 

problem can be solved using efficient techniques that reduce 

the computational time. The bandwidth depends on the 

number of terms used in the function expansion that is used 

over the cross-section and by the number of nodes for each 

beam element. The more refined that the beam model is, the 

higher the bandwidth.

3. Numerical results

This section investigates the capabilities of different beam 

models in the free vibration analysis of thin-walled stiffened 

structures. Three structures are considered, including:

• ��a stiffened plate;

• ��a stiffened cylinder with eight longitudinal stringers and 

one transversal rib;

• ��a launcher model that includes both longitudinal and 

transversal stiffeners with two lateral boosters.

TE and LE expansions are used, and a different order 

of expansion (N) is considered when TE models are used 

while different meshes over the cross-section are taken 

into account when LE models are considered. The results 

obtained by the TE and LE models are compared to those 

obtained using the MSC NASTRAN commercial code. Two 

approaches were used: the first considers a 3D model, and 

the second uses 1D and 2D models joined together. The 

structures are built using aluminum with a Young modulus 

(E) of 75 GPa, Poisson ratio (ν) of 0.3 and density (ρ) equal 

to 2700 kg/m3.

3.1 Assessment and convergence analysis

A stiffened plate was considered in order to assess the 

model and to perform some convergence analyses. The 

geometry of the model is reported in Fig. 6. The structure is 

clamped at y=0 and y=10 m. The assessments focused on the 

effects of the choice of the expansion over the cross-section. 

TE models with a different order were considered, and when 

the LE model was used, different discretizations over the Fig. 5. ��Fundamental nuclei assembly procedure.
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cross-section were taken into account. Fig. 7 shows some of 

the cross-sectional approximations that were considered. 

The convergence analysis was conducted by increasing 

the number of elements used for each panel between the 

reinforcements, and the notation LE-(N)E was used when 

(N) elements were used between the reinforcements. In the 

case of the TE models, the convergence was investigated 

with an increasing order of expansion. TE(N) denotes a 

model of order (N), and EULE denotes the Euler-Bernoulli 

model. Five cubic beam elements were thus used along the 

beam axis.

Table 1 shows the first five frequencies that were evaluated 

using different models. The reference results were been 

obtained using a full 3D FEM model. The results show that 

the TE models require a very low number of DOFs but, a sixth 

order model, TE6, still does not provide good convergence. 

Moreover, some modes cannot be detected by using lower 

order models, and the LE models provide better results. 

Convergence can be easily achieved by improving the 

discretization over the cross-section. When 3 elements are 

used in between the two reinforcements in the LE-3E model, 

the results are accurate and the number of DOFs is just one 

half that of the reference model. It is clear that the modes 

with a higher number of half-waves require a refined mesh in 

order to be accurately evaluated. The convergence behavior 

of the first five modes is shown in Fig. 8. From these results, 

it is clear that the LE models are able to detect very complex 

modal shapes, and the results converge to the reference 

values. On the other hand, TE models are very cheap but do 

not provide accurate results for reinforced structures.

3.2 Reinforced cylinder

The geometry of the cylindrical structure is shown in 

Fig. 9. It has length L that is equal to 15 m and has both 

ends clamped. Three components were used to build the 

entire structure. Fig. 10 shows the beam configuration, 

where components 1 and 3 have the same cross-section 

(Fig. 11a). Components 1 and 3 are thin-walled cylinders 

reinforced with eight stringers while component 2 (Fig. 11b) Fig. 6. ��Reinforced plate geometry.

Table 1. First 5 natural frequencies of the reinforced plate evaluated using TE and LE models

 
 

 
 

TABLE1 

 

 FEM3D  LE-2E LE-3E LE-4E LE-5E LE-6E EULE TE1 TE2 TE3 TE4 TE5 TE6

DOFs 6840  3024 3600 4176 4752 5328 48 144 288 480 720 1008 1344

1 14.1  15.0 14.5 14.3 14.2 14.1 21.2 21.0 18.5 18.2 17.8 17.6 16.4

2 14.5  15.4 14.9 14.8 14.7 14.6 -* 161.2 27.3 23.3 22.7 20.8 19.7

3 23.6  24.0 23.9 23.7 23.7 23.6 -* -* 156.0 42.2 36.8 31.7 29.3

4 27.2  30.1 28.3 27.8 27.6 27.5 -* -* 71.0 50.9 54.7 49.0 42.6

5 28.1  29.5 28.7 28.4 28.2 28.2 -* -* -* 164.4 90.1 45.3 34.4

 
 

 
 

 
(7a) LE-2E Model 

 
(7b) LE-4E Model 

 

 
(7c) LE-6E Model] 

 
Fig. 7: Reinforced panel LE models: example of different cross-sectional disctretizations. 
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Fig. 7: Reinforced panel LE models: example of different cross-sectional disctretizations. 

                                                                   (a) LE-2E Model                                                                                 (b) LE-4E Model 
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Fig. 7: Reinforced panel LE models: example of different cross-sectional disctretizations. 

                                                                                                                              (c) LE-6E Model 

Fig. 7. Reinforced panel LE models: example of different cross-sectional disctretizations
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(8a) Mode 1, 14.1 Hz.

 

 

(8b) Mode 2, 14.5 Hz.

  

    

 
 

 
 

 

(8a) Mode 1, 14.1 Hz.

 

 

(8b) Mode 2, 14.5 Hz.

  
                                                                  (a) Mode 1, 14.1 Hz                                                                                  (b) Mode 2, 14.5 Hz

 
 

 
 

 

 

(8c) Mode 3, 23.6 Hz.

 

(8d) Mode 4, 27.2 Hz.

 

 

    

 
 

 
 

 

 

(8c) Mode 3, 23.6 Hz.

 

(8d) Mode 4, 27.2 Hz.

 

 

                                                                  (c) Mode 3, 23.6 Hz                                                                                    (d) Mode 4, 27.2 Hz
 

 

 
 

 

 

(8e) Mode 5, 28.1 Hz. 

Fig. 8: Convergence analysis of the reinforced panel. 

    

                                                                                                                                 (e) Mode 5, 28.1 Hz 

Fig. 8. ��Convergence analysis of the reinforced panel.

 
 

 
 

 

 

Fig. 10: Component-wise representation of the reinforced cylinder.

Fig. 10. ��Component-wise representation of the reinforced cylinder.

 
 

 
 

 

Fig. 9: Reinforced cylinder model.
Fig. 9. ��Reinforced cylinder model.
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is a circumferential reinforcement or rib. The geometrical 

properties of both components are shown in Fig. 11.

The aim of this modal analysis is to highlight the 

capabilities of the TE/LE model in evaluating the classical 

beam modes, such as bending and torsional modes. The 

results are compared to those obtained using two FE models 

built using the MSC NASTRAN commercial code. The 3D FE 

model was built using solid elements while for the 2D − 1D 

FE model, shell elements are used to simulate the skin while 

beam elements are used for both the stringers and the rib 

with the correct offset from skin included. When TE models 

are used, different N orders of expansion are considered to 

evaluate the convergence to the reference solution. The LE 

model is built using 24 nine-node elements over the cross-

section, as shown in Fig. 12. When LE models are used, two 

different discretizations are considered along the y-axis. The 

former considers 4 beam elements with 3 nodes (beam-3) 

for components 1 and 3 while the latter has 8 cubic elements 

for the same components. For both LE models, component 2 

 
 

 
 

 

(11a) Components 1 and 3. 

 

 

(11b) Components 2. 

Fig. 11: Reinforced cylinder cross-section geometry. 

     

 
 

 
 

 

(11a) Components 1 and 3. 

 

 

(11b) Components 2. 

Fig. 11: Reinforced cylinder cross-section geometry. 
                                                                     (a) Components 1 and 3                                                     (b) Components 2 

Fig. 11. Reinforced cylinder cross-section geometry.

Table 2. First 15 frequencies of the reinforced cylinder evaluated using the TE models

 
 

 
 

TABLE2 

fs [Hz] TE 1 TE 2 TE 3 TE 4 TE 5 
 1 42.25(B) 42.90(B) 38.98(B) 38.92(B) 38.79(B) 
2 42.25(B) 42.90(B) 39.04(B) 38.97(B) 38.94(B) 
3 91.53(T) 91.53(T) 78.01(S) 70.05(S) 53.24(S) 
4 120.66(A) 123.04(B) 78.09(S) 70.14(S) 53.28(S) 
5 121.95(B) 123.05(B) 91.53(T) 83.28(S) 67.21(S) 
6 121.95(B) 147.57(A) 107.50(B) 83.29(S) 70.47(S) 
7 193.06(B) 195.24(B) 107.71(B) 91.53(T) 70.48(S) 
8 193.06(B) 195.24(B) 120.87(S) 102.77(S) 77.27(S) 
9 220.66(T) 220.66(T) 120.88(S) 102.78(S) 91.53(T) 

10 281.81(T) 281.81(T) 147.33(A) 107.27(B) 92.78(S) 
11 295.96(A) 307.28(B) 162.12(B) 107.43(B) 92.80(S) 
12 305.67(B) 307.29(B) 162.46(B) 147.28(A) 107.18(B)

13 305.68(B) 357.06(A) 162.66(S) 147.84(S) 107.36(B)

14 373.53(A) 379.54(B) 162.67(S) 147.88(S) 133.75(S) 
15 377.38(B) 379.55(B) 220.63(T) 161.43(B) 139.39(S) 

(B) Bending , (T) Torsion , (S) Shell Like , (A) Assial

Fig. 12. ��LE distretization of the cross-section of the reinforced cylinder.
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has 1 cubic beam element along the axis. Table 2 shows the 

first 15 frequencies that were evaluated using different TE 

models. When T E1 and T E2 are considered, only bending, 

axial and torsional modes are found because a coarse 

kinematic model was used. When the N-order increases, 

the model is able to identify more shell-like modes, and the 

bending and torsional modes converge to a 3D FE solution. 

Table 3 shows the first 15 frequencies with both LE24 models. 

The model with more elements over the axis, LE24+, shows 

more shell-like modes before the first bending frequency 

with respect to LE24, and the bending frequency slightly 

decreases, as expected.

Table 4 shows the first two bending and torsional 

frequencies that were computed using different structural 

models. The first column reports the results evaluated using 

the solid model, and the accurate mesh makes these results 

accurate, and so these are used as reference. The 2D − 1D FE 

model allows the number of DOFs to be drastically reduced, 

but an error greater than 10% is observed in the case of the 

first bending and torsional frequencies. When a T E5 model 

is used, the bending frequencies show an error close to 15%, 

but the error increases up to 30% if the torsional frequencies 

are considered. The LE models provide results that are 

very close to the reference solution. Both models that are 

proposed provide an error close to 1% in the case of the first 

bending and torsional frequency, and the error increases 

up to 6% when the second frequency is considered. Among 

the models that are considered, refined one-dimensional LE 

models appear to be more accurate. These models provide an 

error with respect to the solid model, but a reduction should 

be considered in terms of the number of DOFs. The DOFs 

of the LE24 are about 2% that of the 3D FE DOFs while the 

DOFs of LE24+ are 4% of that. When the axial discretization 

is refined, a slow convergence can be seen with respect to the 

3D FE solution, as shown in Table 4.

Figure 13 shows the first bending mode for all models, 

including 3D, 2D − 1D, T E5 and LE24+. When both models 

obtained with commercial code are considered, both the 

global and local effects are well detected. On the other 

hand, only global modes appear with TE and LE models. In 

the case of the TE models, theses result can be improved by 

increasing the order of expansion N while for the LE models, 

a refined cross-sectional mesh is required to detect the local 

effects. Figs. 14, 15 and 16 show that both the TE and LE 

Table 3. ��First 15 frequencies of the reinforced cylinder evaluated us-
ing the LE models

 
 

 
 

TABLE 3 

fs [Hz] LE 24 LE 24+
1 18.51(S) 17.43(S)

2 18.67(S) 17.46(S)

3 26.22(S) 25.10(S)

4 26.24(S) 25.11(S)

5 30.74(S) 30.26(S)

6 30.80(S) 30.34(S)

7 31.63(S) 30.48(S)

8 31.89(S) 30.55(S)

9 34.17(B) 31.66(S)

10 34.55(B) 31.74(S)

11 35.93(S) 33.99(B)

12 36.45(S) 34.14(B)

13 43.39(S) 42.35(S)

14 43.51(S) 42.38(S)

15 68.64(S) 46.71(S)

(B) Bending , (S) Shell Like

Table 4. Comparisons of the first two bending and torsional frequencies of the reinforced cylinder using different structural model [Hz].

 
 

 
 

TABLE 4 

Mode FEM3D FEM2D1D TE 5 LE 24 LE 24+ 
DOF: 390192 26206 2142 8352 15264 

Bending Frequencies:     
1a 33.64 37.49 (+11.4%) 38.79 (+15.3%) 34.17 (+1.6%) 33.99 (+1.0%) 
2a 94.82 91.06 (4.0%) 107.18(+13.0%) 88.89 (6.3%) 89.07 (6.4%) 

Torsion Frequencies:     
1a 67.67 77.83 (+15.0%) 91.53 (+35.3%) 68.65 (+1.4%) 68.32 (+0.9%)

2a 175.33 179.49(+2.4%) 220.63(+25.8%) 163.90(6.5%) 162.90(7.6%) 
( )(*%) : * Percentage difference with respect to 3D FE Model 

 

 
 

 

(13a) f3D = 33.64Hz. 

(13b) f2D−1D = 37.49Hz. 

(13c) fTE5 = 38.79Hz. 

(13d) fLE24+ = 33.99Hz. 

Fig. 13: First bending mode of the reinforce cylinder.
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Fig. 13: First bending mode of the reinforce cylinder.
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Fig. 13: First bending mode of the reinforce cylinder.

    

 
 

 
 

 

(13a) f3D = 33.64Hz. 

(13b) f2D−1D = 37.49Hz. 

(13c) fTE5 = 38.79Hz. 

(13d) fLE24+ = 33.99Hz. 

Fig. 13: First bending mode of the reinforce cylinder.

                     (a) f3D = 33.64Hz                                   (b) f2D−1D = 37.49Hz                                  (c) fTE5 = 38.79Hz                                  (d) fLE24+ = 33.99Hz

Fig. 13. First bending mode of the reinforce cylinder.
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models are able to accurately detect the global behaviour 

shown by the 3D FE model. In conclusion, an analysis of the 

results suggests the following:

• ��When TE models are used, many terms in the expansion 

are required in order to ensure good agreement with the 

commercial code in detecting shell-like modes;

• ��LE models provide good result using fewer DOFs than 

both 2D − 1D and 3D FE models;

• ��Reinforced thin-walled structures require an LE model 

for proper analysis.

3.3 Complete launcher modal analysis

The geometry of the complete schema of the launcher 

that is considered in this work is shown in Fig. 17. The entire 

structure is composed of three main components, a central 

body and two lateral boosters that are attached to the central 

body via four connection points CP. Eleven components 

are used to build this launcher structure, as shown in Fig. 

18. This Fig. shows that the launcher can be considered 

as one beam with a variable section. Fig. 19 shows the 7 

different cross-sections that are used to build the model. The 

circumferential reinforcements are reported in Figs. 19a, e, 

and g and are respectively used in components 1, 5 and 9. 

The components 2, 4, 6, 8 and 10 are thin-walled cylinders 

with four longitudinal reinforcements, and these use the 

sections that are shown in Figs. 19b, d and f. Fig. 19c shows 

 
 

 
 

 

(14a) f3D = 94.82Hz. 

(14b) f2D−1D = 91.07Hz. 

(14c) fTE5 = 107.18Hz. 

(14d) fLE24+ =  89.07Hz. 

Fig. 14: Second bending mode of the reinforce cylinder.

 

    

 
 

 
 

 

(14a) f3D = 94.82Hz. 

(14b) f2D−1D = 91.07Hz. 

(14c) fTE5 = 107.18Hz. 

(14d) fLE24+ =  89.07Hz. 

Fig. 14: Second bending mode of the reinforce cylinder.

 

    

 
 

 
 

 

(14a) f3D = 94.82Hz. 

(14b) f2D−1D = 91.07Hz. 

(14c) fTE5 = 107.18Hz. 

(14d) fLE24+ =  89.07Hz. 

Fig. 14: Second bending mode of the reinforce cylinder.

 

    

                       (a) f3D = 94.82Hz                                        (b) f2D−1D = 91.07Hz                          (c) fTE5 = 107.18Hz                                 (d) fLE24+ =  89.07Hz

Fig. 14. Second bending mode of the reinforce cylinder.
 

 

 
 

 

(15a) f3D =  67.67Hz. 

(15b) f2D−1D = 77.83Hz. 

(15c) fTE5 = 91.53Hz. 

(15d) fLE24+ =  68.32Hz. 

Fig. 15: First torsional mode of the reinforce cylinder.

    

 
 

 
 

 

(15a) f3D =  67.67Hz. 

(15b) f2D−1D = 77.83Hz. 

(15c) fTE5 = 91.53Hz. 

(15d) fLE24+ =  68.32Hz. 

Fig. 15: First torsional mode of the reinforce cylinder.

    

 
 

 
 

 

(15a) f3D =  67.67Hz. 

(15b) f2D−1D = 77.83Hz. 

(15c) fTE5 = 91.53Hz. 

(15d) fLE24+ =  68.32Hz. 

Fig. 15: First torsional mode of the reinforce cylinder.
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                             (a) f3D =  67.67Hz                                       (b) f2D−1D = 77.83Hz                              (c) fTE5 = 91.53Hz                             (d) fLE24+ =  68.32Hz

Fig. 15. First torsional mode of the reinforce cylinder.
 

 

 
 

 

(16a) f3D =  175.33Hz. 

(16b) f2D−1D =  179.49Hz. 

(16c) fTE5 = 220.63Hz. 

(16d) fLE24+ =  162.90Hz. 

Fig. 16: Second torsional mode of the reinforce cylinder.

    

 
 

 
 

 

(16a) f3D =  175.33Hz. 

(16b) f2D−1D =  179.49Hz. 

(16c) fTE5 = 220.63Hz. 

(16d) fLE24+ =  162.90Hz. 

Fig. 16: Second torsional mode of the reinforce cylinder.

    

 
 

 
 

 

(16a) f3D =  175.33Hz. 

(16b) f2D−1D =  179.49Hz. 

(16c) fTE5 = 220.63Hz. 

(16d) fLE24+ =  162.90Hz. 

Fig. 16: Second torsional mode of the reinforce cylinder.

    

                      (a) f3D =  175.33Hz                                  (b) f2D−1D =  179.49Hz                                  (c) fTE5 = 220.63Hz                           (d) fLE24+ =  162.90Hz

Fig. 16. Second torsional mode of the reinforce cylinder.

 
 

 
 

 

 

Fig. 17: Launcher configuration. 
Fig. 17. ��Launcher configuration.
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the section that was used for components 3 and 7 where the 

central body is connected with the boosters. The geometrical 

dimensions of these 7 cross-sections are shown in Table 5. 

The components that include a transversal reinforcement 

have only one cubic element along the axis while the others, 

where there is a thin-walled configuration, have two cubic 

elements. Both stringers and CP properties are reported in 

Table 6. A detailed view of the discretization of section 3 is 

reported in Fig. 20. When the LE models are considered, 

the position of the cross-sectional nodes is influenced by 

the geometry, and in this case, it is important to place these 

in the correct position connect the central body with the 

booster.

The results are compared with those from two FE models 

that were built using the MSC NASTRAN commercial code. 

The first model is built using solid elements while the shell 

and beam elements compose the second FE model. The shell 

elements are used to simulate skin while the beam elements 

are used for stringers and ribs. No constraints were imposed 

on the model, but the null frequencies have been neglected 

in the results due to the rigid body motion. Table 7 shows 

the first 15 frequencies that were evaluated using the TE 

models. When N increases, the TE models can identify more 

complex modes. Table 8 shows the first 25 frequencies that 

were evaluated with the Lagrange, LE, model and with the FE 

models created using the commercial code. The results with 

LE are very close to the results obtained with the Solid FE 

model, but this model has only 5% of the DOFs with respect 

to the Solid model while the 2D-1D model has 72% of the 

DOFs.

Table 9 shows 12 frequencies that were chosen among 

the frequencies reported in Table 8, and these are used to 

compare the results in terms of the modes. While Table 8 

shows the first 25 frequencies of each model without any 

considerations of the modal shape, the frequencies in Table 

9 correspond to the same mode. The results obtained with 

the T E3 model show that 10 terms in the expansion were 

not sufficient to find an accurate solution. Even if, the DOFs 

were only 0.23% of the DOFs of the reference model, the 

third order model based on the Taylor expansion should 

not be considered to be accurate in the analysis of such 

structures. The results obtained using the LE, 1D − 2D and 

the Solid models provide complex modes that may involve 

the entire structure or only a part of it. When the LE model 

is used, all the 12 reference modes are found while the use 

of the 2D − 1D FE model is missing mode 5. The fourth 

reference mode, which is shown in Fig. 21, is a complex 

mode where a local bending mode characterizes the central 

body while the lateral bodies are characterized by a shell-

 
 

 
 

 

Fig. 18: Component-wise representation of the launcher. Fig. 18. ��Component-wise representation of the launcher.
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                                                 (a) Section 1                                                                      (b) Section 2                                                    (c) Section 3

 
 

 
 

(19d) Section 4 

 

(19e) Section 5 

(19f) Section 6 

(19g) Section 7 

Fig. 19: Cross-section geometry of the launcher components.

      

 
 

 
 

(19d) Section 4 

 

(19e) Section 5 

(19f) Section 6 

(19g) Section 7 

Fig. 19: Cross-section geometry of the launcher components.

      

 
 

 
 

(19d) Section 4 

 

(19e) Section 5 

(19f) Section 6 

(19g) Section 7 

Fig. 19: Cross-section geometry of the launcher components.

      

 
 

 
 

(19d) Section 4 

 

(19e) Section 5 

(19f) Section 6 

(19g) Section 7 

Fig. 19: Cross-section geometry of the launcher components.

                                            (d) Section 4                                                        (e) Section 5                                        (f ) Section 6                   (g) Section 7

Fig. 19. Cross-section geometry of the launcher components.
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like mode. In this case, the same error is committed if both 

the 2D − 1D FE model and the LE model are compared with 

the Solid model. The reference mode 6, which is shown in 

Fig. 22, is a global bending mode that involves a complete 

structure. For this mode, the frequency that is evaluated with 

the LE model is more accurate than that from the 1D − 2D 

model. The reference mode 9 (Fig. 23) is more accurate if it 

is evaluated using the 2D − 1D model while both LE9 and 

the 2D − 1D models commit the same error when evaluating 

mode 10 (Fig. 24). Modes 11 and 12 (Figs. 25 and 26) exhibit 

quite complex modal shapes, and the results from the LE 

model are accurate. The results shown in Table 9 highlight 

that, even if the results evaluated using the LE still have some 

errors, these errors are often lower than those provided 

Table 5. Geometrical data of the components of the launcher

 
 

 
 

TABLE 5 

ID Sec Comp NBEAM CrossSection [m] Lenght [m]
1 1 1 Re1 = 1.50 h = 0.25 
   Se1 = 0.13  
   Le1 = 9.00  

2 2 2 Re2 = 1.50 h = 3.50 
   Se2 = 0.03  
   Le2 = 9.00  

3 3 / 7 1 Re3 = 1.50  Ri3 = 2.70 h = 0.25 
   Se3 = 0.13  Si3 = 0.20  
   Le3 = 9.00  Li3 = 4.50  

4 4 / 6 2 Re4 = 1.50  Ri4 = 2.70 h = 13.50 
   Se4 = 0.03  Si4 = 0.04  
   Le4 = 9.00  Li4 = 4.50  

5 5 1 Re5 = 1.50  Ri5 = 2.70 h = 0.25 
   Se5 = 0.13  Si5 = 0.20  
   Le5 = 9.00  Li5 = 4.50  

6 8 / 10 2 Ri6 = 2.70 h = 13.50 
   Si6 = 0.04  

7 9 / 11 1 Ri7 = 2.70 h = 0.25 
   Si7 = 0.20  

NBEAM : Number of refined beam element along the yaxis

h : Component size along the yaxis 

Table 6. Geometries of the cross-sections of the launcher components

 
 

 
 

TABLE 6 

Dimensions Si Se CP 
Long side 0.16 0.10 0.30 
Short side 0.06 0.06 0.06 

Si : Stringers located in the central body 
Se : Stringers located in the lateral bodies
CP : Connection Points

 
 

 
 

(20a) Overall Section 

 

(20b) Detail : Connection Point 

 

Fig. 20: LE discretization of the joint between the central body and the lateral boosters.

      

 
 

 
 

(20a) Overall Section 

 

(20b) Detail : Connection Point 

 

Fig. 20: LE discretization of the joint between the central body and the lateral boosters.

    

                                                                 (a) Overall Section                                                                                   (b) Detail : Connection Point

Fig. 20. LE discretization of the joint between the central body and the lateral boosters.
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by the 1D − 2D model. At the same time, the LE model 

drastically reduces the number of DOFs with respect to the 

models built using the commercial code. In fact, this model 

only has 5% of the DOFs with respect to the solid model and 

7% with respect to the 1D − 2D model. The computational 

efficiency and high level of accuracy of the LE model, which 

is are at least comparable to those of the 1D − 2D model, 

make the refined one-dimensional model very attractive 

in the dynamic analysis of complex structures, as for the 

launcher that is considered here.

4. Concluding Remarks

In this paper, different finite elements models were 

compared for the free vibration analysis of thin-walled 

Table 7. First 15 frequencies of the launchers evaluated using the TE models

 
 

 
 

TABLE 7 

fs [Hz] TE 2 TE 3 TE 4 
DOF 414 1290 1935 

1 8.73 7.57 8.29 
2 11.78 9.94 9.00 
3 15.17 13.29 10.20 
4 16.74 14.65 11.42 
5 20.67 14.96 12.68 
6 22.53 16.18 20.39 
7 27.30 19.52 24.86 
8 33.20 20.81 25.61 
9 37.35 23.34 28.58 
10 39.43 25.28 33.51 
11 46.19 26.34 40.40 
12 46.93 29.65 43.77 
13 48.21 33.27 45.49 
14 52.76 33.35 48.08 
15 53.35 36.74 49.21 

Table 8. First 25 frequencies of the launchers evaluated using the LE, the 1D-2D and the Solid models

 
 

 
 

TABLE 8 

fs [Hz] FEM3D FEM2D1D LE 9 
DOF 565740 408456 29682 

1 0.54 0.46 0.74 
2 0.63 0.56 0.92 
3 3.76 2.75 4.69 
4 5.31 4.16 6.82 
5 6.00 5.37 7.93 
6 6.61 5.99 8.05 
7 6.87 6.52 8.52 
8 6.91 6.82 8.94 
9 7.60 6.91 9.28 
10 8.27 7.34 9.62 
11 8.55 7.49 10.52 
12 8.67 7.61 10.70 
13 10.42 8.03 12.49 
14 10.66 8.58 12.50 
15 10.86 9.15 13.98 
16 11.63 9.29 14.22 
17 12.87 9.97 14.36 
18 12.92 10.71 15.86 
19 13.09 11.01 16.19 
20 13.35 11.84 16.19 
21 13.71 12.15 16.32 
22 14.79 13.11 16.55 
23 14.96 13.26 16.61 
24 15.06 13.77 16.62 
25 15.12 14.38 16.94 

(206~222)14-077.indd   219 2015-07-03   오전 4:56:13



DOI: http://dx.doi.org/10.5139/IJASS.2015.16.2.206 220

Int’l J. of Aeronautical & Space Sci. 16(2), 206–222 (2015)

Table 9. Comparison of 12 representative frequencies of the launchers evaluated with different models

 
 

 
 

TABLE 9 

Reference 
Mode

FEM3D FEM2D1D LE 9 TE 3 

DOF 565740 408456 29682 1290 
1 0.63 0.56(11.1%) 0.74 (+17.5%) * 
2 5.31 4.16(21.7%) 4.69 (11.7%) * 
3 6.61 6.52(1.3%) 9.28 (+40.4%) 14.65(+121.6%) 
4 7.60 6.82(10.2%) 6.82 (10.2%) * 
5 8.27 * 9.62 (+16.3%) * 
6 8.55 6.91(19.2%) 7.93 (7.3%) 14.96(+75.0%) 
7 10.42 7.34(29.6%) 10.70 (2.7%) 20.81(+99.7%) 
8 10.66 13.26(+24.5%) 12.49(+17.2%) * 
9 10.86 9.97 (+8.2%) 12.50(+15.1%) * 
10 11.63 13.78(+18.5%) 13.98(+20.2%) * 
11 13.72 11.01(19.7%) 14.22(+3.7%) * 
12 14.79 13.11(+11.4%) 14.36(2.9%) * 

* : Mode not predicted by the model 
( )(*%) : * percentage error with respect to the FEM3D Model 

 

 
 

(21a) f3D = 7.60 Hz 

(21b) f2D−1D = 6.82 Hz 

(21c) fLE = 6.82 Hz 

Fig. 21: Modal shape comparisons of the 4th reference mode of the launcher. 
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(24a) f3D = 11.63 Hz 
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Fig. 24: Modal shape comparisons of the 10th reference mode of the launcher.
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(22a) f3D = 8.55 Hz 

(22b) f2D−1D = 6.91 Hz 
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Fig. 22. ��Modal shape comparisons of the 6th reference mode of the launcher.

 
 

 
 

 

(25a) f3D = 13.72 Hz 
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Fig. 25: Modal shape comparisons of the 11th reference mode of the launcher.
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(23a) f3D = 10.86 Hz 
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Fig. 23: Modal shape comparisons of the 9th reference mode of the launcher.
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26(a) f3D = 14.79 Hz 

(26b) f2D−1D = 13.11 Hz 

(26c) fLE = 14.36 Hz

Fig. 26: Modal shape comparisons of the 12th reference mode of the launcher.
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structures reinforced using longitudinal and transversal 

stiffeners. Two different one-dimensional refined models 

were derived by means of the Carrera Unified Formulation: 

one based on the Taylor expansion and the other on the 

Lagrange expansion. Three reinforced thin-walled structures 

were taken into account during analysis, including a 

stiffened plate, a reinforced cylinder and a complete schema 

of the launcher. The results were compared to those obtained 

by means of Solid and shell/beam FE models built using the 

MSC NASTRAN commercial code. Following the analysis, 

the following conclusing can be drawn:

• ��the refined one-dimensional models overcome the 

limitations of the classical models and are able to detect 

both global and local (shell like) modes.

• ��the present refined 1D models allow thin-walled and 

stiffener components to be analyzed by referring to the 

same element as in the 3D case which is not the case in 

2D-shell analysis where stiffeners are usually introduced 

by beam elements with an off-set;

• ��refined one-dimensional LE models are at least as 

accurate as the 1D-2D models even though they require 

a much smaller number of DOFs; and

• ��the LE models provide a better solution with respect to 

the TE models for the analysis of thin-walled structures.

In conclusion, the models that are herein proposed are 

very attractive for the analysis of reinforced structures. An 

extension to more complex cases, with the inclusion of a 

dynamic response and composite structures as well, could 

be a future extension of the present investigation.

References

[1] Wempner, G. A. and Wilms, E.V., Multi-rail launcher 

with six degrees of freedom, University of Alabama Research 

Institute, 1966. 

[2] Przemieniecki, J.S., “Matrix structural analysis of 

substructures”, AIAA Journal, Vol. 1, No.1, 1963, pp.138-147.

[3] Hurty,W.C., “Dynamic analysis of structural systems 

using component modes”, AIAA Journal, Vol. 3, No.4, 1965, 

pp. 678-685.

[4] Craig, R.R. and Bampton, M.C.C., “Coupling of 

substructures for dynamic analysis” AIAA Journal, Vol.6, 

No.7, 1968, pp.1313-1319.

[5] Grimes, P.J., McTigue, L.D., Riley, G.F. and Tilden, D.I., 

Advancements in structural dynamic technology resulting 

from Saturn V programs, NASA CR-1539, June 1970.

[6] Benfield, W.A. and Hruda, R.F. “Vibration analysis of 

structures by component mode substitution”, AIAA Journal, 

Vol. 9, No.7, 1971, pp.1255-1261.

[7] Goldenberg, S. and Shapiro, M., A study of modal 

coupling procedures for the space shuttle, NASACR-112252, 

1973.

[8] Agrawal, B.N., “Mode synthesis technique for dynamic 

analysis of structures”, The Journal of the Acoustical Society of 

America, Vol.59, 1976, pp.1329-1338. 

DOI:10.1121/1.381019.

[9] Thornton, E.A., Vibration analysis of a 1/15 scale 

dynamic model of a space shuttle configuration, NASA CR-

111984, 1971.

[10] Urgueira, A.P.V., Dynamic analysis of coupled structures 

using experimental data, University of London, 1989.

[11] Friswell, M. and Mottershead, J.E., Finite Element 

Model Updating in Structural Dynamics, Kluwer Academic 

Publishers, 1996.

[12] Buehrle, R.D., Fleming, G.A. and Pappa, R.S., “Finite 

element model development and validation for aircraft 

fuselage structures”. 18th International Modal Analysis 

Conference, San Antonio, Texas, 2000.

[13] Hu, H., Wang, Y. and Lu, W., “Structural dynamic 

analysis of a sounding rocket during the liftoff”, Journal of 

Aeronautics, Astronautics ans Aviation, Vol.41, No.2, 2009, 

pp.111-120.

[14] De Vivo, A., Brutti, C. and Leofanti,  J.L., “Modal shape 

identification of large structure exposed towind excitation by 

operational modal analysis technique”, Mechanical Systems 

and Signal Processing, Vol.39, 2013, pp.195-206.

[15] Fransen, S., Rixen, D., Henricksen, T. and Bonnet, M., 

“On the operational modal analysis of solid rocket motors”, 

In: Proceedings of the 28th International Modal Analysis 

Conference, Jacksonville, Florida, USA, February 1-4, 2010.

[16] Işik, S.K., Ider, C. and Acar, B., “Modeling and 

verification of a missile launcher system”, Journal of Multi-

body Dynamics, Vol. 228, 2014, pp. 100-107.

[17] Carrera, E., “A class of two dimensional theories for 

multilayered plates analysis”. Atti Accademia delle Scienze di 

Torino, Memorie Scienze Fisiche, Vol. 19-20, 1995, pp. 49-87.

[18] Carrera, E., “Theories and finite elements for 

multilayered, anisotropic, composite plates and shells”, 

Archives of Computational Methods in Engineering, Vol.9, 

No. 2, 2002, pp.87-140.

[19] Carrera, E., “Theories and finite elements for 

multilayered plates and shells: a unified compact formulation 

with numerical assessment and benchmarking”, Archives of 

Computational Methods in Engineering, Vol.10, No.3, 2003, 

pp. 216-296.

[20] Carrera, E. and Giunta, G., “Refined beam theories 

based on a unified formulation”, International Journal of 

Applied Mechanics, Vol. 2, No. 1, 2010, pp.117-143.

(206~222)14-077.indd   221 2015-07-03   오전 4:56:14



DOI: http://dx.doi.org/10.5139/IJASS.2015.16.2.206 222

Int’l J. of Aeronautical & Space Sci. 16(2), 206–222 (2015)

[21] Carrera, E., Giunta, G., Nali, P. and Petrolo, M., 

“Refined beam elements with arbitrary cross-section 

geometries”, Computers & Structures, Vol.88. No.5–6, 2010, 

pp.283–293.

[22] Carrera, E., Petrolo, M. and Zappino, E., “Performance 

of CUF approach to analyze the structural behavior of 

slender bodies”, Journal of Structural Engineering, Vol.138, 

No. 2, 2012, pp. 285-297. DOI:10.1061/(ASCE)ST.1943-

541X.0000402.

[23] Carrera, E., Petrolo, M. and Nali, P., “Unified 

formulation applied to free vibrations finite element analysis 

of beams with arbitrary section”, Shock and Vibrations, Vol. 

18, No. 3, 2011, pp. 485-502.

[24] Carrera, E., Pagani, A. and Petrolo, M., “Classical, 

refined and component-wise analysis of reinforced-shell 

structures”, AIAA Journal, Vol. 51, No. 5, 2013, pp. 1255-1268.

[25] Carrera, E., Pagani, A. and Petrolo, M., “Component-

wise method applied to vibration of wing structures”, Journal 

of Applied Mechanics, Vol. 88, No. 4, 2013, pp. 041012.1–

041012.15.

[26] Carrera, E., Pagani, A. and Petrolo, M., “Classical, 

refined, and component-wise analysis of reinforced-shell wing 

structures”. AIAA Journal, Vol. 51, No. 5, 2013, pp. 1255-1268. 

DOI:10.2514/1.J052331.

[27] Carrera, E., Gaetano, G. and Petrolo M., Beam 

Structures, Classical and Advanced Theories, John Wiley & 

Sons, 2011.

[28] Carrera, E., Cinefra, M., Petrolo, M. and Zappino, 

E., Finite Element Analysis of Structures Through Unified 

Formulation, John Wiley & Sons, 2014.

(206~222)14-077.indd   222 2015-07-03   오전 4:56:14


