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Abstract

The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based 

on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle 

measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation 

input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of 

precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect 

causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should 

be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator 

gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and 

the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement 

sensors.
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1. Introduction

The Hemispherical Resonator Gyroscope (HRG) is one 

of the vibratory gyroscopes that can be operated as an 

angle sensor or angular rate sensor, based on its operation 

mode. The vibratory gyroscope has the advantage of 

having no mechanically moving part, which means that 

it has less chance of operation failure, compared to the 

classical mechanical gyro. The working principle of 

the vibratory gyro is based on the Coriolis effect. If the 

external rotation of the platform occurs while the vibratory 

gyroscope is at the specific resonance mode termed ‘n=2 

mode’, this external rotation causes precession of the 

resonance pattern angle. When the gyroscope is operated 

in angular rate measurement mode, the resonance pattern 

angle is controlled to have fixed value. By measuring the 

amount of pattern angle control input, the corresponding 

external angular rate can be estimated. The second mode 

is angle measurement mode. In this mode, the resonating 

pattern angle is allowed to precess freely, with respect to 

the external rotation. The external rotation angle can be 

estimated, by measuring the precession of the pattern 

angle. 

In angle measurement mode, the pattern angle rotation 

is also affected by manufacturing error of the resonator, 

as well as the external rotation input. Although there are 

several other reasons, such as the temperature effect, the 

main reason that causes degradation of the angle estimation 

performance is the imperfection of the resonator. The 

imperfection of the resonator can be modeled with 

two parameters: frequency mismatch, and asymmetric 

damping. Frequency mismatch means the difference of 

the resonating frequency on two main axes. Asymmetric 

damping denotes the difference of the damping coefficient 

on two main axes.

To operate the vibratory gyros in angle measurement mode, 

its resonance should first be performed and maintained. 

Then, the quadrature vibration should be suppressed, and 

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	     	*	Ph. D Student, Corresponding author: jhpi@ascl.kaist.ac.kr
		  **	Professor 



DOI:10.5139/IJASS.2013.14.4.379 380

Int’l J. of Aeronautical & Space Sci. 14(4), 379–386 (2013)

phase-locked loop should be applied [1]. The next task is to 

compensate the drift effect of the pattern angle, due to the 

imperfection parameter of the resonator. These imperfection 

parameters should be estimated, and correctly compensated, 

for accurate angle measurement.

There have been several researches on the control of 

the hemispherical resonator gyroscope. Lynch [1] has 

derived a slow-varying dynamic equation, which has the 

advantage that it is rather intuitive and easy to control, 

compared to the conventional fast-varying dynamic 

equation. He also designed a controller based on the slow-

varying dynamics for angular rate measurement mode, 

by applying classical PI control law. Zuravlev [2] analyzed 

the drift effect of the resonating pattern angle, due to the 

imperfection of the resonator. Zhbanov [3] proposed a 

balancing mechanism to reduce the mass imbalance of 

the resonator, which causes the frequency mismatch of the 

resonator. As can be seen from the previous researches, 

most of the research deals with identifying and analyzing 

the drift effect of the resonator. However, there have been 

few researches to estimate the imperfection parameter, 

and compensate the drift effect. For the case of the MEMS 

(Micro-Electro-Mechanical System) gyroscope, there are 

several researches for compensating the drift effect of the 

resonator. Park [4, 5] applied adaptive control, based on a 

fast-varying dynamic equation. He also suggested applying 

a persistent excitation force, as well as the control force, to 

maintain the resonance.

In this paper, an imperfection parameter observer and 

corresponding compensation controller are designed for the 

hemispherical resonator gyroscope in angle measurement 

mode. The dynamic equation of the hemispherical resonator 

gyros is introduced, and analyzed. The imperfection 

parameter observer and compensation controller are 

designed based on the dynamic model, and are introduced. 

The observer for imperfection parameters is designed with 

nonlinear reduced order, and defining estimation error 

dynamics. The controller has two parts: the basic PI control, 

and the feedback linearization part, for compensation of 

the pattern angle drift effect. Finally, numerical simulation, 

which combines the proposed observer and controller, is 

performed for verification.

2. Dynamic Model of HRG

2.1 Fast-Varying Model

Before designing the observer of imperfection parameter 

and the controller for compensating the drift effect, a 

dynamic model of HRG should first be established. The 

dynamic model of HRG can be simplified, with its movement 

at the surface. The generalized CVG (Coriolis Vibratory 

Gyroscope) model is well known in this area [1]. A geometric 

representation is shown in Fig. 1.

The left side figure represents the shape of the resonator, 

seen from the tip. The x and y axes are 45 degrees separated, 

and the motions in each axis are independent of each 

other, for ideal gyros. The dynamic motions in the x and y 

axes are termed the generalized CVG model or fast-varying 

model, since the frequency of the dynamics is relatively 

high, compared to the slow-varying model. The right 

side figure denotes the slow-varying parameter, which is 

derived from the left side fast-varying dynamics. In the 

right side figure, a and q denote the motion of the main 

resonance and quadrature axis. 
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where, x and y denote the main resonance axis and quadrature axis separated by 45 degrees, 

as shown in Figure 1. Ω represents the external angular rate input, k represents the resonator 

gain factor, and fx and fy denote the external acceleration input for each axis. ω and τ are the 

resonance frequency and damping coefficient of the HRG. θω and θτ denote the orientation of 

the main resonance axis and main damping axis. In practice, these resonance frequencies and 

damping coefficients have slightly different value on each axis, such as ω1, ω2, and τ1, τ2. 

Their difference can be expressed as follows. 

 is the angle between the 

main resonance axis, and the reference x-axis defined by 

the user.

If no gravitational force and constant external rotation rate 

are assumed, the CVG model can be expressed as follows [1].
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where, E is related to the resonating energy, Q is related to the quadrature vibration, θ denotes 

the orientation of the main resonance axis, and δφ denotes the phase difference between 

phase generator and resonator. fas, fqc, fqs, and   are the control inputs.  

This paper takes advantage of the slow-varying model to design the imperfection 

parameter observer and corresponding compensation controller. 
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Manufacturing of the HRG always produces imperfection, such as frequency split and 

asymmetric damping, as previously discussed. In this chapter, a nonlinear observer is 

designed, to estimate the imperfection parameter.  
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Friedland’s approach [6]. 
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where, x and y denote the main resonance axis and quadrature axis separated by 45 degrees, 

as shown in Figure 1. Ω represents the external angular rate input, k represents the resonator 

gain factor, and fx and fy denote the external acceleration input for each axis. ω and τ are the 

resonance frequency and damping coefficient of the HRG. θω and θτ denote the orientation of 

the main resonance axis and main damping axis. In practice, these resonance frequencies and 

damping coefficients have slightly different value on each axis, such as ω1, ω2, and τ1, τ2. 

Their difference can be expressed as follows. 
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The nonlinear function ϕ(x) and its Jacobian matrix Φ(x) are chosen as below. 
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phase generator and resonator. fas, fqc, fqs, and   are the control inputs.  

This paper takes advantage of the slow-varying model to design the imperfection 

parameter observer and corresponding compensation controller. 

 

3. Observer Design 

Manufacturing of the HRG always produces imperfection, such as frequency split and 

asymmetric damping, as previously discussed. In this chapter, a nonlinear observer is 

designed, to estimate the imperfection parameter.  

Using eq. (5), a nonlinear observer to estimate four unknowns is designed, based on 

Friedland’s approach [6]. 
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dynamics can be rewritten as below. 
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phase generator and resonator. fas, fqc, fqs, and   are the control inputs.  

This paper takes advantage of the slow-varying model to design the imperfection 
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where, E is related to the resonating energy, Q is related to the quadrature vibration, θ denotes 

the orientation of the main resonance axis, and δφ denotes the phase difference between 

phase generator and resonator. fas, fqc, fqs, and   are the control inputs.  

This paper takes advantage of the slow-varying model to design the imperfection 

parameter observer and corresponding compensation controller. 

 

3. Observer Design 

Manufacturing of the HRG always produces imperfection, such as frequency split and 

asymmetric damping, as previously discussed. In this chapter, a nonlinear observer is 

designed, to estimate the imperfection parameter.  

Using eq. (5), a nonlinear observer to estimate four unknowns is designed, based on 

Friedland’s approach [6]. 

The nonlinear reduced order observer has the following form. 
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where, x  and u  are the state variable of the dynamic equation and the control input, 

respecively. p̂  is the estimated unknown parameter, �(x) is an appropriately chosen 

nonlinear function, and Φ(x) is its Jacobian matrix, with respect to the state variable. 

For the case that the dynamics is affine with respect to the unknown parameter, the 

dynamics can be rewritten as below. 

( , , ) ( , ) ( , )f x u p F x u p g x u    (7) 
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symmetric matrix, the estimation error converges to zero.

In this paper, two separate observers are designed, as 

below.
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and g(x,u) is the part that doesn’t include the known parameter. 
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where, F(x,u) is the Jacobian of the dynamic equation with respect to the known parameter, 
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where, E is related to the resonating energy, Q is related to the quadrature vibration, θ denotes 

the orientation of the main resonance axis, and δφ denotes the phase difference between 
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For the conventional operation of HRG, the state variable E is controlled to have positive 

constant value for the amplitude control of the resonator, while the variable Q is controlled to 

be zero, for the suppression of quadrature vibration. 
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estimation error. As a result, the two state variable control commands for the imperfection 
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Since the angle measurement mode allows the pattern angle to precess freely with respect 

to the external rotation, the PI controller for pattern angle is not implemented. However, it is 

necessary to compensate drift effect on the pattern angle. The compensation control for 

pattern angle drift is proposed in the following section. 
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The general expression for a dynamic model that includes an error parameter term can be 

written as below. 

( ) ( ) ( )x g x d x M x f     (16) 

where, x, g(x), d(x), M(x) and f stand for the state vector, the dynamics excluding the error 

parameter term, the error term that contains the error parameter, the transformation matrix 

from control forces to state vector, and the control forces, respectively.  

To cancel out the error term in the dynamic equation, feedback linearization control force 

can be implemented, as follows. 

1

( ) ( ) 0

( ) ( )
FL

FL

d x M x f
f M x d x

 

 
  (17) 
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state variables E, Q, δ� are controlled by the basic PI control, the only state variable that 

needs to be compensated is the pattern angle, θ. 

Since the compensation control is implemented to the pattern angle only, it is 

computationally efficient. 

As a result, the drift compensation controller is designed as below. 
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The simulation results are shown in Figs. 2, 3, and 4. 
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the basic PI control proposed by Lynch [1].

Fig. 3 shows estimation performance of the designed 

frequency mismatch observer. The frequency mismatch 

parameter observer shows satisfying performance. 

However, it has a slight steady-state error, since the observer 

uses the initial estimate value of the asymmetric damping 

parameter.

As seen from Fig. 4, the observer for asymmetric 

damping has poor estimation performance, compared to 

the frequency mismatch parameter observer. This error is 

caused by the estimation error of the frequency mismatch 

parameter. 

If there is no estimation error on the frequency mismatch 

parameter, the asymmetric damping observer converges 

exactly, as in Fig. 5.

To check the effect of persistent excitation control, the 

observer for frequency mismatch is simulated, when HRG 

is controlled as conventional operation mode (Qcmd=0). 

Fig. 6 shows that the observer diverges, since the persistent 

excitation condition is not met.

5.2 Drift Compensation Control

The drift compensation controller is also verified with 

numerical simulation. At first, numerical simulation for 

basic PI control without drift compensation control is 

performed, to analyze the drift effect. It is assumed that there 

is no external rotation. The result is shown in Fig. 7.

As seen from Fig. 7, the pattern angle rotates, even if 

there is no external rotation. Therefore, it is necessary to 

implement drift compensation control. 

Fig. 8 shows the result when the drift compensation 

control is implemented with the estimated error parameter 

in section 5.1. The drift compensation control reduces the 

pattern angle drift effect, namely improving the performance 

of angle estimation. There still exists small drift error, 

caused by the small estimation error on each imperfection 

parameter.
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6. Conclusion

A controller for the HRG in angle measurement mode is 

proposed. In this mode, the pattern angle drift effect caused 

by imperfection of the HRG significantly affects the angle 

estimation performance. For this reason, drift compensation 

control is necessary, for its accurate operation. 

The controller is composed of basic PI control and drift 

compensation control, using a feedback linearization 

method.

To implement the drift compensation controller, 

estimation of the imperfection parameter is essential. 

This estimation is performed with the proposed nonlinear 

observer.

Furthermore, the persistent excitation condition is 

studied, for the convergence of the proposed observer.

Numerical simulation is performed with the proposed 

control algorithm and parameter observer, for verification. 

Although there is small estimation error for the imperfection 

parameter, the simulation results showed that the pattern 

angle drift effect due to the imperfection parameter is greatly 

reduced by the proposed imperfection parameter observer 

and drift compensation controller.
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