Subject Keyword Abstract Author
 
 
Flutter Characteristics of Aircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity

Seung-Jun Lee, In Lee / Won-Ho Shin
International Journal of Aeronautical and Space Sicences, vol. 8, no. 1, pp.140-147, 2007

Abstract : Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel¡¯s minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.

Keyword : Dynamic Stiffness, Friction, Nonlinearity, Flutter, DHM

 
 
   
The Korean Society for Aeronautical & Space Sciences
#635-4, YEOGSAM-DONG, KANGNAM-KU, SEOUL 135-703, KOREA
Tel.: +82-2-552-4795  Fax.: +82-2-552-4796  E-mail: jass@ksass.or.kr