Subject Keyword Abstract Author
 
 
Development of an Advanced Rotorcraft Preliminary Design Framework

Jaehoon Lim/SangJoon Shin/Junemo Kim
International Journal of Aeronautical and Space Sicences, vol. 10, no. 2, pp.134-139, 2009

Abstract : Various modules are generally combined with one another in order to perform rotorcraft preliminary design and its optimization. At the stage of the preliminary design, analysis fidelity is less important than the rapid assessment of a design is. Most of the previous researchers attempted to implement sophisticated applications in order to increase the fidelity of analysis, but the present paper focuses on a rapid assessment while keeping the similar level of fidelity. Each small-sized module will be controlled by an externally-operated global optimization module. Results from each module are automatically handled from one discipline to another which reduces the amount of computational effort and time greatly when compared with manual execution. Automatically handled process decreases computational cycle and time by factor of approximately two. Previous researchers and the rotorcraft industries developed their own integrated analysis for rotorcraft design task, such as HESCOMP, VASCOMP, and RWSIZE. When a specific mission profile is given to these programs, those will estimate the aircraft size, performance, rotor performance, component weight, and other aspects. Such results can become good sources for the supplemental analysis in terms of stability, handling qualities, and cost. If the results do not satisfy the stability criteria or other constraints, additional sizing processes may be used to re-evaluate rotorcraft size based on the result from stability analysis. Trade-off study can be conducted by connecting disciplines, and it is an important advantage in a preliminary design study. In this paper among the existing rotorcraft design programs, an adequate program is selected for a baseline of the design framework, and modularization strategy will be applied and further improvements for each module be pursued.

Keyword : Rotorcraft, Design optimization, Modularization, Preliminary design

 
 
   
The Korean Society for Aeronautical & Space Sciences
#635-4, YEOGSAM-DONG, KANGNAM-KU, SEOUL 135-703, KOREA
Tel.: +82-2-552-4795  Fax.: +82-2-552-4796  E-mail: jass@ksass.or.kr