Subject Keyword Abstract Author
 
 
Research Advances on Tension Buckling Behaviour of Aerospace Structures: A Review

Prosun Kumar Datta/Sauvik Biswas
International Journal of Aeronautical and Space Sicences, vol. 12, no. 1, pp.1-15, 2011

Abstract : This paper reviews most of the research done in the field of tensile buckling characteristics pertaining to aerospace structural elements with special attention to local buckling and parametric excitation due to periodic loading on plate and shell elements. The concepts of buckling in aerospace structures appear as the result of the application of a global compressive applied load or shear load. A less usual situation is the case, in which a global tensile stress creates buckling instability and the formation of complex spatial buckling pattern. In contrast to the case of a pure compression or shear load, here the applied macroscopic load has no compressive component and is thus globally stabilizing. The instability stems from a local compressive stress induced by the presence of a defect, such as a crack or a hole, due to partial or non-uniform applied load at the far end. This is referred to as tensile buckling. This paper discusses all aspects of tensile buckling, theoretical and experimental. Its far reaching applications causing local instability in aerospace structural components are discussed. The important effects on dynamic stability behaviour under locally induced periodic compression have been identified and influences of various parameters are discussed. Experimental results on simple and combination resonance characteristics on plate structures due to tensile buckling effects are elaborated.

Keyword : Parametric instability, Vibration, curved panels, Nonlinear behaviour, Tensile buckling

 
 
   
The Korean Society for Aeronautical & Space Sciences
#635-4, YEOGSAM-DONG, KANGNAM-KU, SEOUL 135-703, KOREA
Tel.: +82-2-552-4795  Fax.: +82-2-552-4796  E-mail: jass@ksass.or.kr